Development of a natural origin, mineralizable, fit-to-shape, nanocomposite and tissue-adhesive hydrogel

Detalhes bibliográficos
Autor(a) principal: Nunes, Ana Rita Bandarra
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/25805
Resumo: A wide plethora of hydrogels are currently suggested as effective tissue regeneration supports. Aa recent trend concerns bioadhesives with the ability to joint tissue parts together. In particular, biomaterials based on mussel-inspired principles have shown high underwater adhesiveness. Applications as tissue sealants, cardiac patches and bone fixating agents have been suggested. However, the development of systems with tuneable physical properties overtime and bioactivity towards cells and tissues is still scarce. With the current limitations associated to bioadhesives in mind, this thesis targets the development of a fit-to-shape biomaterial with bioadhesiveness as well as the ability to acquire a fixed shape overtime, increasing the mended tissues stability. Moreover, the design of this hydrogel-based system also aims at reaching bioactivity to enable both the in situ osseointegration of the bioactive glue (tackling the regeneration of bone defects), localized ionic release and cytocompatibility. Chitosan modified with the DOPA peptide domain was combined with Stöber silica nanoparticles enriched with calcium and phosphate ions to form a composite multifunctional hydrogel. Biomaterials processed with different contents of nanoparticles were tested for their water content, swelling in water and physiological-like solutions, rheological behavior (including stiffness, loss modulus, shear thinning behavior and recovery after structural destruction), ability to adhere biological tissues, and mineralization capability in simulated body fluid (SBF). A stable hydrogel with partial self-recovery upon destruction and shear thinning behavior was obtained by raising the pH of the dissolved polymer to 7. The addition of nanoparticles to the hydrogel led to an increase in storage modulus, and the maintenance of the shear-thinning behavior. Time-dependent oxidation of chitosan’s catechol groups led a time-driven increase of the stiffness of the hydrogels due to the formation of covalent bonds between quinone groups. Hydrogels also showed the ability to bind skin and bone tissues together and increasing amounts of nanoparticles improved the adhesion properties of the materials. While immersed in SBF, the hydrogels promoted the formation of calcium phosphates with Ca/P ratios close the one of hydroxyapatite (~1.67). Overall, the biomaterials developed herein may be used as a biological tissue adhesive with osseointegrative and shape-fixation/time dependent stiffening properties, which may make them promising tissue regeneration devices. Although directed to fixation and regeneration of bone defects, the hydrogel proposed in this thesis may find application in the regeneration of a multiplicity of tissues, including skin and muscle
id RCAP_4169087dadbf6d1017a66ca5184dbeb7
oai_identifier_str oai:ria.ua.pt:10773/25805
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of a natural origin, mineralizable, fit-to-shape, nanocomposite and tissue-adhesive hydrogelHydrogelsBioactivityBioadhesionSelf-HealingShape-fittingShape fixationA wide plethora of hydrogels are currently suggested as effective tissue regeneration supports. Aa recent trend concerns bioadhesives with the ability to joint tissue parts together. In particular, biomaterials based on mussel-inspired principles have shown high underwater adhesiveness. Applications as tissue sealants, cardiac patches and bone fixating agents have been suggested. However, the development of systems with tuneable physical properties overtime and bioactivity towards cells and tissues is still scarce. With the current limitations associated to bioadhesives in mind, this thesis targets the development of a fit-to-shape biomaterial with bioadhesiveness as well as the ability to acquire a fixed shape overtime, increasing the mended tissues stability. Moreover, the design of this hydrogel-based system also aims at reaching bioactivity to enable both the in situ osseointegration of the bioactive glue (tackling the regeneration of bone defects), localized ionic release and cytocompatibility. Chitosan modified with the DOPA peptide domain was combined with Stöber silica nanoparticles enriched with calcium and phosphate ions to form a composite multifunctional hydrogel. Biomaterials processed with different contents of nanoparticles were tested for their water content, swelling in water and physiological-like solutions, rheological behavior (including stiffness, loss modulus, shear thinning behavior and recovery after structural destruction), ability to adhere biological tissues, and mineralization capability in simulated body fluid (SBF). A stable hydrogel with partial self-recovery upon destruction and shear thinning behavior was obtained by raising the pH of the dissolved polymer to 7. The addition of nanoparticles to the hydrogel led to an increase in storage modulus, and the maintenance of the shear-thinning behavior. Time-dependent oxidation of chitosan’s catechol groups led a time-driven increase of the stiffness of the hydrogels due to the formation of covalent bonds between quinone groups. Hydrogels also showed the ability to bind skin and bone tissues together and increasing amounts of nanoparticles improved the adhesion properties of the materials. While immersed in SBF, the hydrogels promoted the formation of calcium phosphates with Ca/P ratios close the one of hydroxyapatite (~1.67). Overall, the biomaterials developed herein may be used as a biological tissue adhesive with osseointegrative and shape-fixation/time dependent stiffening properties, which may make them promising tissue regeneration devices. Although directed to fixation and regeneration of bone defects, the hydrogel proposed in this thesis may find application in the regeneration of a multiplicity of tissues, including skin and muscleUma grande variedade de hidrogéis são atualmente sugeridos como suportes eficazes para regeneração de tecidos. Sistemas bioadesivos com capacidade de unir partes de tecido são muito populares na comunidade científica, em particular, biomateriais inspirados na forte adesão do mexilhão, estes mostram grande adesividade em ambientes aquáticos e por isso têm sido sugeridos para aplicações como selantes de tecido, adesivos cardíacos e agentes de fixação de osso. No entanto o desenvolvimento de sistemas com propriedades físicas ajustáveis e bioatividade em células e tecidos ainda é escasso. Considerando as limitações atuais associadas aos bioadesivos, esta dissertação tem como objetivo o desenvolvimento de um biomaterial fit-to-shape com bioadesividade, bem como a capacidade de adquirir uma forma fixa com o tempo, aumentando a estabilidade dos tecidos a reparar. Além disso, este sistema, visa também atingir a bioatividade para permitir tanto a integração óssea in situ da cola bioativa como liberação iônica localizada e citocompatibilidade. Quitosano modificado com o domínio peptídico 3,4-dihydroxyphenyl-L-alanine (DOPA) foi combinado com nanopartículas de sílica produzidas pelo método de Stöber e funcionalizadas com iões cálcio e fosfato para formar um hidrogel compósito multifuncional. Biomateriais preparados com diferentes quantidades de nanopartículas foram caracterizados quanto ao seu conteúdo de água, capacidade de retenção de água e soluções fisiológicas, comportamento reológico (incluindo rigidez, módulo de perda, comportamento shear-thinning e recuperação após destruição estrutural), capacidade de aderir a tecidos biológicos e capacidade de mineralização em fluido corporal simulado (SBF). Elevando o pH do polímero dissolvido para 7 foi obtido um hidrogel estável com auto-recuperação parcial após a destruição e comportamento shear-thinning. A adição de nanopartículas ao hidrogel levou a um aumento do módulo de armazenamento, e à inalteração do comportamento shear-thinnning. A oxidação dos grupos catecol do quitosano levou a um aumento na rigidez dos hidrogéis, devido à formação de ligações covalentes entre os grupos quinona. Os hidrogéis também mostraram a capacidade de unir tecidos de pele e osso, sendo que o aumento da quantidade de nanopartículas melhora as propriedades de adesão dos materiais. Hidrogéis imersos em SBF promoveram a formação de fosfato de cálcio com rácio Ca/P próximo ao da hidroxiapatite (~1,67). Em geral, o biomaterial aqui apresentado pode ser usado como um adesivo de tecido biológico com propriedades osteointegrativas e de fixação de forma-dependente do tempo, promissor na regeneração de tecidos. Embora direcionado para a fixação e regeneração de defeitos ósseos, o hidrogel proposto nesta dissertação pode encontrar aplicação na regeneração de uma multiplicidade de tecidos, incluindo pele e músculo2020-10-31T00:00:00Z2018-12-13T00:00:00Z2018-12-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/25805TID:202232107engNunes, Ana Rita Bandarrainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:01Zoai:ria.ua.pt:10773/25805Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:58.271170Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of a natural origin, mineralizable, fit-to-shape, nanocomposite and tissue-adhesive hydrogel
title Development of a natural origin, mineralizable, fit-to-shape, nanocomposite and tissue-adhesive hydrogel
spellingShingle Development of a natural origin, mineralizable, fit-to-shape, nanocomposite and tissue-adhesive hydrogel
Nunes, Ana Rita Bandarra
Hydrogels
Bioactivity
Bioadhesion
Self-Healing
Shape-fitting
Shape fixation
title_short Development of a natural origin, mineralizable, fit-to-shape, nanocomposite and tissue-adhesive hydrogel
title_full Development of a natural origin, mineralizable, fit-to-shape, nanocomposite and tissue-adhesive hydrogel
title_fullStr Development of a natural origin, mineralizable, fit-to-shape, nanocomposite and tissue-adhesive hydrogel
title_full_unstemmed Development of a natural origin, mineralizable, fit-to-shape, nanocomposite and tissue-adhesive hydrogel
title_sort Development of a natural origin, mineralizable, fit-to-shape, nanocomposite and tissue-adhesive hydrogel
author Nunes, Ana Rita Bandarra
author_facet Nunes, Ana Rita Bandarra
author_role author
dc.contributor.author.fl_str_mv Nunes, Ana Rita Bandarra
dc.subject.por.fl_str_mv Hydrogels
Bioactivity
Bioadhesion
Self-Healing
Shape-fitting
Shape fixation
topic Hydrogels
Bioactivity
Bioadhesion
Self-Healing
Shape-fitting
Shape fixation
description A wide plethora of hydrogels are currently suggested as effective tissue regeneration supports. Aa recent trend concerns bioadhesives with the ability to joint tissue parts together. In particular, biomaterials based on mussel-inspired principles have shown high underwater adhesiveness. Applications as tissue sealants, cardiac patches and bone fixating agents have been suggested. However, the development of systems with tuneable physical properties overtime and bioactivity towards cells and tissues is still scarce. With the current limitations associated to bioadhesives in mind, this thesis targets the development of a fit-to-shape biomaterial with bioadhesiveness as well as the ability to acquire a fixed shape overtime, increasing the mended tissues stability. Moreover, the design of this hydrogel-based system also aims at reaching bioactivity to enable both the in situ osseointegration of the bioactive glue (tackling the regeneration of bone defects), localized ionic release and cytocompatibility. Chitosan modified with the DOPA peptide domain was combined with Stöber silica nanoparticles enriched with calcium and phosphate ions to form a composite multifunctional hydrogel. Biomaterials processed with different contents of nanoparticles were tested for their water content, swelling in water and physiological-like solutions, rheological behavior (including stiffness, loss modulus, shear thinning behavior and recovery after structural destruction), ability to adhere biological tissues, and mineralization capability in simulated body fluid (SBF). A stable hydrogel with partial self-recovery upon destruction and shear thinning behavior was obtained by raising the pH of the dissolved polymer to 7. The addition of nanoparticles to the hydrogel led to an increase in storage modulus, and the maintenance of the shear-thinning behavior. Time-dependent oxidation of chitosan’s catechol groups led a time-driven increase of the stiffness of the hydrogels due to the formation of covalent bonds between quinone groups. Hydrogels also showed the ability to bind skin and bone tissues together and increasing amounts of nanoparticles improved the adhesion properties of the materials. While immersed in SBF, the hydrogels promoted the formation of calcium phosphates with Ca/P ratios close the one of hydroxyapatite (~1.67). Overall, the biomaterials developed herein may be used as a biological tissue adhesive with osseointegrative and shape-fixation/time dependent stiffening properties, which may make them promising tissue regeneration devices. Although directed to fixation and regeneration of bone defects, the hydrogel proposed in this thesis may find application in the regeneration of a multiplicity of tissues, including skin and muscle
publishDate 2018
dc.date.none.fl_str_mv 2018-12-13T00:00:00Z
2018-12-13
2020-10-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25805
TID:202232107
url http://hdl.handle.net/10773/25805
identifier_str_mv TID:202232107
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137643968069632