Predicting biologic therapy outcome of patients with spondyloarthritis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/124268 |
Resumo: | Funding Information: This study was supported by the Portuguese Foundation for Science and Technology (Fundação para a Ciência e Tecnologia) through the Instituto de Telecomunicações (UIDB/50008/2020), INESC-ID (UIDB/50021/2020), and projects MATISSE (DSAIPA/DS/0026/2019) and PREDICT (PTDC/CCI-CIF/29877/2017). This work has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 951970 (OLISSIPO project). We also acknowledge Sociedade Portuguesa de Reumatologia and all Reuma.pt contributors. |
id |
RCAP_41e1c7d80442f79e9f3b1e1dad12ce16 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/124268 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting biologic therapy outcome of patients with spondyloarthritisJoint models for longitudinal and survival analysisData miningDrug survivalElectronic medical recordsJoint modelsMedical recordsRheumatic diseaseSpondyloarthritisSurvival analysisHealth InformaticsHealth Information ManagementSDG 3 - Good Health and Well-beingFunding Information: This study was supported by the Portuguese Foundation for Science and Technology (Fundação para a Ciência e Tecnologia) through the Instituto de Telecomunicações (UIDB/50008/2020), INESC-ID (UIDB/50021/2020), and projects MATISSE (DSAIPA/DS/0026/2019) and PREDICT (PTDC/CCI-CIF/29877/2017). This work has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 951970 (OLISSIPO project). We also acknowledge Sociedade Portuguesa de Reumatologia and all Reuma.pt contributors.Background: Rheumatic diseases are one of the most common chronic diseases worldwide. Among them, spondyloarthritis (SpA) is a group of highly debilitating diseases, with an early onset age, which significantly impacts patients' quality of life, health care systems, and society in general. Recent treatment options consist of using biologic therapies, and establishing the most beneficial option according to the patients' characteristics is a challenge that needs to be overcome. Meanwhile, the emerging availability of electronic medical records has made necessary the development of methods that can extract insightful information while handling all the challenges of dealing with complex, real-world data. Objective: The aim of this study was to achieve a better understanding of SpA patients' therapy responses and identify the predictors that affect them, thereby enabling the prognosis of therapy success or failure. Methods: A data mining approach based on joint models for the survival analysis of the biologic therapy failure is proposed, which considers the information of both baseline and time-varying variables extracted from the electronic medical records of SpA patients from the database, Reuma.pt. Results: Our results show that being a male, starting biologic therapy at an older age, having a larger time interval between disease start and initiation of the first biologic drug, and being human leukocyte antigen (HLA)-B27 positive are indicators of a good prognosis for the biological drug survival; meanwhile, having disease onset or biologic therapy initiation occur in more recent years, a larger number of education years, and higher values of C-reactive protein or Bath Ankylosing Spondylitis Functional Index (BASFI) at baseline are all predictors of a greater risk of failure of the first biologic therapy. Conclusions: Among this Portuguese subpopulation of SpA patients, those who were male, HLA-B27 positive, and with a later biologic therapy starting date or a larger time interval between disease start and initiation of the first biologic therapy showed longer therapy adherence. Joint models proved to be a valuable tool for the analysis of electronic medical records in the field of rheumatic diseases and may allow for the identification of potential predictors of biologic therapy failure.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)Centro de Estudos de Doenças Crónicas (CEDOC)Comprehensive Health Research Centre (CHRC) - pólo NMSRUNBarata, CarolinaMaria Rodrigues, AnaCanhão, HelenaVinga, SusanaCarvalho, Alexandra M.2021-09-09T00:27:38Z2021-072021-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/124268engPURE: 33427731https://doi.org/10.2196/26823info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:55:58Zoai:run.unl.pt:10362/124268Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:55:58Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting biologic therapy outcome of patients with spondyloarthritis Joint models for longitudinal and survival analysis |
title |
Predicting biologic therapy outcome of patients with spondyloarthritis |
spellingShingle |
Predicting biologic therapy outcome of patients with spondyloarthritis Barata, Carolina Data mining Drug survival Electronic medical records Joint models Medical records Rheumatic disease Spondyloarthritis Survival analysis Health Informatics Health Information Management SDG 3 - Good Health and Well-being |
title_short |
Predicting biologic therapy outcome of patients with spondyloarthritis |
title_full |
Predicting biologic therapy outcome of patients with spondyloarthritis |
title_fullStr |
Predicting biologic therapy outcome of patients with spondyloarthritis |
title_full_unstemmed |
Predicting biologic therapy outcome of patients with spondyloarthritis |
title_sort |
Predicting biologic therapy outcome of patients with spondyloarthritis |
author |
Barata, Carolina |
author_facet |
Barata, Carolina Maria Rodrigues, Ana Canhão, Helena Vinga, Susana Carvalho, Alexandra M. |
author_role |
author |
author2 |
Maria Rodrigues, Ana Canhão, Helena Vinga, Susana Carvalho, Alexandra M. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM) Centro de Estudos de Doenças Crónicas (CEDOC) Comprehensive Health Research Centre (CHRC) - pólo NMS RUN |
dc.contributor.author.fl_str_mv |
Barata, Carolina Maria Rodrigues, Ana Canhão, Helena Vinga, Susana Carvalho, Alexandra M. |
dc.subject.por.fl_str_mv |
Data mining Drug survival Electronic medical records Joint models Medical records Rheumatic disease Spondyloarthritis Survival analysis Health Informatics Health Information Management SDG 3 - Good Health and Well-being |
topic |
Data mining Drug survival Electronic medical records Joint models Medical records Rheumatic disease Spondyloarthritis Survival analysis Health Informatics Health Information Management SDG 3 - Good Health and Well-being |
description |
Funding Information: This study was supported by the Portuguese Foundation for Science and Technology (Fundação para a Ciência e Tecnologia) through the Instituto de Telecomunicações (UIDB/50008/2020), INESC-ID (UIDB/50021/2020), and projects MATISSE (DSAIPA/DS/0026/2019) and PREDICT (PTDC/CCI-CIF/29877/2017). This work has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 951970 (OLISSIPO project). We also acknowledge Sociedade Portuguesa de Reumatologia and all Reuma.pt contributors. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-09T00:27:38Z 2021-07 2021-07-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/124268 |
url |
http://hdl.handle.net/10362/124268 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 33427731 https://doi.org/10.2196/26823 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545820540502016 |