Multivariate Analysis of Sustainable Data in Energy Utility - Clustering Analysis Application in Contributing Locations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/149810 |
Resumo: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
id |
RCAP_41e68367e61d199019ff37fbbe3e8623 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/149810 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multivariate Analysis of Sustainable Data in Energy Utility - Clustering Analysis Application in Contributing LocationsSustainabilityReportingCRISP-DM MethodologyData MiningUnsupervised LearningClusteringInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsWith the increase of amount of data generated, finding a way to get knowledge and insights from them is fundamental in decision-making for any kind company in any field. For a company as EDP, an electric utility, and its responsibilities and commitments entailed its crucial to meet the expectations of its customers and investors, otherwise it is in danger of losing its reputation and money to its competitors. With this in mind and being that I was in the team responsible for collecting the sustainable data from the locations belonging to EDP Group, we decided to move forward to an analysis of the reporting process and by complementing it by analysing a clustering solution to characterize the diverse locations. This project followed CRISP-DM methodology from the beginning until the end where the clustering solution was found by applying hierarchical clustering on top of K-means. All the data understanding, transformation, modeling and model evaluation was performed using Jupyter Notebook, being the final solution built in Power BI platform.Neto, Miguel de Castro Simões FerreiraRUNLourenço, Filipe Vieira2023-02-28T15:57:10Z2023-01-262023-01-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/149810TID:203238834enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:31:40Zoai:run.unl.pt:10362/149810Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:52.553203Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multivariate Analysis of Sustainable Data in Energy Utility - Clustering Analysis Application in Contributing Locations |
title |
Multivariate Analysis of Sustainable Data in Energy Utility - Clustering Analysis Application in Contributing Locations |
spellingShingle |
Multivariate Analysis of Sustainable Data in Energy Utility - Clustering Analysis Application in Contributing Locations Lourenço, Filipe Vieira Sustainability Reporting CRISP-DM Methodology Data Mining Unsupervised Learning Clustering |
title_short |
Multivariate Analysis of Sustainable Data in Energy Utility - Clustering Analysis Application in Contributing Locations |
title_full |
Multivariate Analysis of Sustainable Data in Energy Utility - Clustering Analysis Application in Contributing Locations |
title_fullStr |
Multivariate Analysis of Sustainable Data in Energy Utility - Clustering Analysis Application in Contributing Locations |
title_full_unstemmed |
Multivariate Analysis of Sustainable Data in Energy Utility - Clustering Analysis Application in Contributing Locations |
title_sort |
Multivariate Analysis of Sustainable Data in Energy Utility - Clustering Analysis Application in Contributing Locations |
author |
Lourenço, Filipe Vieira |
author_facet |
Lourenço, Filipe Vieira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Neto, Miguel de Castro Simões Ferreira RUN |
dc.contributor.author.fl_str_mv |
Lourenço, Filipe Vieira |
dc.subject.por.fl_str_mv |
Sustainability Reporting CRISP-DM Methodology Data Mining Unsupervised Learning Clustering |
topic |
Sustainability Reporting CRISP-DM Methodology Data Mining Unsupervised Learning Clustering |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-28T15:57:10Z 2023-01-26 2023-01-26T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/149810 TID:203238834 |
url |
http://hdl.handle.net/10362/149810 |
identifier_str_mv |
TID:203238834 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138128906158080 |