Lifting solutions of quasilinear convection-dominated problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/11146 https://doi.org/10.1080/00207160802385800 |
Resumo: | In certain cases, quasilinear convection-diffusion-reaction equations range from parabolic to almost hyperbolic, depending on the ratio between convection and diffusion coefficients. From a numerical point of view, two main difficulties can arise related to the existence of layers and/or the non-smoothness of the coefficients of such equations. In this paper we study the steady-state solution of a convection-dominated problem. We present a new numerical method based on the idea of solving an associated modified problem, whose solution corresponds to a lifting of the solution of the initial problem. The method introduced here avoids an a priori knowledge of the layer(s) location and allows an efficient handling of the lack of smoothness of the coefficients. Numerical simulations that show the effectiveness of our approach are included. |
id |
RCAP_4209604eb06332826e6d38ece5993a0d |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/11146 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Lifting solutions of quasilinear convection-dominated problemsConvection-dominated problemNon-uniform meshesConvergenceIn certain cases, quasilinear convection-diffusion-reaction equations range from parabolic to almost hyperbolic, depending on the ratio between convection and diffusion coefficients. From a numerical point of view, two main difficulties can arise related to the existence of layers and/or the non-smoothness of the coefficients of such equations. In this paper we study the steady-state solution of a convection-dominated problem. We present a new numerical method based on the idea of solving an associated modified problem, whose solution corresponds to a lifting of the solution of the initial problem. The method introduced here avoids an a priori knowledge of the layer(s) location and allows an efficient handling of the lack of smoothness of the coefficients. Numerical simulations that show the effectiveness of our approach are included.Taylor & Francis2009-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/11146http://hdl.handle.net/10316/11146https://doi.org/10.1080/00207160802385800engInternational Journal of Computer Mathematics. (2009) iFirst0020-7160Ferreira, J. A.Mouro, A. P.Oliveira, P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:07:35Zoai:estudogeral.uc.pt:10316/11146Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:46.857872Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Lifting solutions of quasilinear convection-dominated problems |
title |
Lifting solutions of quasilinear convection-dominated problems |
spellingShingle |
Lifting solutions of quasilinear convection-dominated problems Ferreira, J. A. Convection-dominated problem Non-uniform meshes Convergence |
title_short |
Lifting solutions of quasilinear convection-dominated problems |
title_full |
Lifting solutions of quasilinear convection-dominated problems |
title_fullStr |
Lifting solutions of quasilinear convection-dominated problems |
title_full_unstemmed |
Lifting solutions of quasilinear convection-dominated problems |
title_sort |
Lifting solutions of quasilinear convection-dominated problems |
author |
Ferreira, J. A. |
author_facet |
Ferreira, J. A. Mouro, A. P. Oliveira, P. |
author_role |
author |
author2 |
Mouro, A. P. Oliveira, P. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ferreira, J. A. Mouro, A. P. Oliveira, P. |
dc.subject.por.fl_str_mv |
Convection-dominated problem Non-uniform meshes Convergence |
topic |
Convection-dominated problem Non-uniform meshes Convergence |
description |
In certain cases, quasilinear convection-diffusion-reaction equations range from parabolic to almost hyperbolic, depending on the ratio between convection and diffusion coefficients. From a numerical point of view, two main difficulties can arise related to the existence of layers and/or the non-smoothness of the coefficients of such equations. In this paper we study the steady-state solution of a convection-dominated problem. We present a new numerical method based on the idea of solving an associated modified problem, whose solution corresponds to a lifting of the solution of the initial problem. The method introduced here avoids an a priori knowledge of the layer(s) location and allows an efficient handling of the lack of smoothness of the coefficients. Numerical simulations that show the effectiveness of our approach are included. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-04-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/11146 http://hdl.handle.net/10316/11146 https://doi.org/10.1080/00207160802385800 |
url |
http://hdl.handle.net/10316/11146 https://doi.org/10.1080/00207160802385800 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Computer Mathematics. (2009) iFirst 0020-7160 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133898391683072 |