A preliminary approach to the multilabel classification problem of Portuguese juridical documents
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/2559 |
Resumo: | Portuguese juridical documents from Supreme Courts and the Attorney General’s Office are manually classified by juridical experts into a set of classes belonging to a taxonomy of concepts. In this paper, a preliminary approach to develop techniques to automat- ically classify these juridical documents, is proposed. As basic strategy, the integration of natural language processing techniques with machine learning ones is used. Support Vector Machines (SVM) are used as learn- ing algorithm and the obtained results are presented and compared with other approaches, such as C4.5 and Naive Bayes. |
id |
RCAP_42141b57d521e589b17c237cbbb7a462 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/2559 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A preliminary approach to the multilabel classification problem of Portuguese juridical documentsmachine learningText classificationPortuguese juridical documents from Supreme Courts and the Attorney General’s Office are manually classified by juridical experts into a set of classes belonging to a taxonomy of concepts. In this paper, a preliminary approach to develop techniques to automat- ically classify these juridical documents, is proposed. As basic strategy, the integration of natural language processing techniques with machine learning ones is used. Support Vector Machines (SVM) are used as learn- ing algorithm and the obtained results are presented and compared with other approaches, such as C4.5 and Naive Bayes.Springer-Verlag2011-02-15T11:25:43Z2011-02-152003-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article491128 bytesapplication/pdfhttp://hdl.handle.net/10174/2559http://hdl.handle.net/10174/2559eng435-444Lecture Notes in Artificial Intelligence2902livretcg@uevora.ptpq@uevora.ptEPIA-03, 11th Portuguese Conference on Artificial IntelligenceMoura-Pires, F.Abreu, S.498Gonçalves, TeresaQuaresma, Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:39:06Zoai:dspace.uevora.pt:10174/2559Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:14.281620Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
title |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
spellingShingle |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents Gonçalves, Teresa machine learning Text classification |
title_short |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
title_full |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
title_fullStr |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
title_full_unstemmed |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
title_sort |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
author |
Gonçalves, Teresa |
author_facet |
Gonçalves, Teresa Quaresma, Paulo |
author_role |
author |
author2 |
Quaresma, Paulo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Gonçalves, Teresa Quaresma, Paulo |
dc.subject.por.fl_str_mv |
machine learning Text classification |
topic |
machine learning Text classification |
description |
Portuguese juridical documents from Supreme Courts and the Attorney General’s Office are manually classified by juridical experts into a set of classes belonging to a taxonomy of concepts. In this paper, a preliminary approach to develop techniques to automat- ically classify these juridical documents, is proposed. As basic strategy, the integration of natural language processing techniques with machine learning ones is used. Support Vector Machines (SVM) are used as learn- ing algorithm and the obtained results are presented and compared with other approaches, such as C4.5 and Naive Bayes. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-01-01T00:00:00Z 2011-02-15T11:25:43Z 2011-02-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/2559 http://hdl.handle.net/10174/2559 |
url |
http://hdl.handle.net/10174/2559 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
435-444 Lecture Notes in Artificial Intelligence 2902 livre tcg@uevora.pt pq@uevora.pt EPIA-03, 11th Portuguese Conference on Artificial Intelligence Moura-Pires, F. Abreu, S. 498 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
491128 bytes application/pdf |
dc.publisher.none.fl_str_mv |
Springer-Verlag |
publisher.none.fl_str_mv |
Springer-Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136465772347392 |