Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.17/4517 |
Resumo: | Introduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air®, these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air® longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air® data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7 days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age ± SD = 39.1 ± 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms. |
id |
RCAP_4241c6d18fed1b3fa64d3fc048c520bb |
---|---|
oai_identifier_str |
oai:repositorio.chlc.min-saude.pt:10400.17/4517 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal StudyLongitudinal StudiesRhinitis* / epidemiologySurveys and QuestionnairesTelemedicine*HumansHDE ALERIntroduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air®, these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air® longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air® data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7 days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age ± SD = 39.1 ± 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms.WileyRepositório do Centro Hospitalar Universitário de Lisboa Central, EPESousa‐Pinto, BSchünemann, HJSá‐Sousa, AVieira, RJAmaral, RAnto, JMKlimek, LCzarlewski, WMullol, JPfaar, OBedbrook, ABrussino, LKvedariene, VLarenas‐Linnemann, DEOkamoto, YVentura, MTAgache, IAnsotegui, IJBergmann, KCBosnic‐Anticevich, SCanonica, GWCardona, VCarreiro‐Martins, PCasale, TCecchi, LChivato, TChu, DKCingi, CCosta, EMCruz, AADel Giacco, SDevillier, PEklund, PFokkens, WJGemicioglu, BHaahtela, TIvancevich, JCIspayeva, ZJutel, MKuna, PKaidashev, IKhaitov, MKraxner, HLaune, DLipworth, BLouis, RMakris, MMonti, RMorais‐Almeida, MMösges, RNiedoszytko, MPapadopoulos, NGPatella, VPham‐Thi, NRegateiro, FSReitsma, SRouadi, PWSamolinski, BSheikh, ASova, MTodo‐Bom, ATaborda‐Barata, LToppila‐Salmi, SSastre, JTsiligianni, IValiulis, AVandenplas, OWallace, DWaserman, SYorgancioglu, AZidarn, MZuberbier, TFonseca, JABousquet, J2023-05-22T09:30:26Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.17/4517engAllergy. 2023 Apr;78(4):968-983.10.1111/all.15574info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-28T05:20:03Zoai:repositorio.chlc.min-saude.pt:10400.17/4517Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:56:31.767822Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study |
title |
Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study |
spellingShingle |
Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study Sousa‐Pinto, B Longitudinal Studies Rhinitis* / epidemiology Surveys and Questionnaires Telemedicine* Humans HDE ALER |
title_short |
Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study |
title_full |
Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study |
title_fullStr |
Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study |
title_full_unstemmed |
Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study |
title_sort |
Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study |
author |
Sousa‐Pinto, B |
author_facet |
Sousa‐Pinto, B Schünemann, HJ Sá‐Sousa, A Vieira, RJ Amaral, R Anto, JM Klimek, L Czarlewski, W Mullol, J Pfaar, O Bedbrook, A Brussino, L Kvedariene, V Larenas‐Linnemann, DE Okamoto, Y Ventura, MT Agache, I Ansotegui, IJ Bergmann, KC Bosnic‐Anticevich, S Canonica, GW Cardona, V Carreiro‐Martins, P Casale, T Cecchi, L Chivato, T Chu, DK Cingi, C Costa, EM Cruz, AA Del Giacco, S Devillier, P Eklund, P Fokkens, WJ Gemicioglu, B Haahtela, T Ivancevich, JC Ispayeva, Z Jutel, M Kuna, P Kaidashev, I Khaitov, M Kraxner, H Laune, D Lipworth, B Louis, R Makris, M Monti, R Morais‐Almeida, M Mösges, R Niedoszytko, M Papadopoulos, NG Patella, V Pham‐Thi, N Regateiro, FS Reitsma, S Rouadi, PW Samolinski, B Sheikh, A Sova, M Todo‐Bom, A Taborda‐Barata, L Toppila‐Salmi, S Sastre, J Tsiligianni, I Valiulis, A Vandenplas, O Wallace, D Waserman, S Yorgancioglu, A Zidarn, M Zuberbier, T Fonseca, JA Bousquet, J |
author_role |
author |
author2 |
Schünemann, HJ Sá‐Sousa, A Vieira, RJ Amaral, R Anto, JM Klimek, L Czarlewski, W Mullol, J Pfaar, O Bedbrook, A Brussino, L Kvedariene, V Larenas‐Linnemann, DE Okamoto, Y Ventura, MT Agache, I Ansotegui, IJ Bergmann, KC Bosnic‐Anticevich, S Canonica, GW Cardona, V Carreiro‐Martins, P Casale, T Cecchi, L Chivato, T Chu, DK Cingi, C Costa, EM Cruz, AA Del Giacco, S Devillier, P Eklund, P Fokkens, WJ Gemicioglu, B Haahtela, T Ivancevich, JC Ispayeva, Z Jutel, M Kuna, P Kaidashev, I Khaitov, M Kraxner, H Laune, D Lipworth, B Louis, R Makris, M Monti, R Morais‐Almeida, M Mösges, R Niedoszytko, M Papadopoulos, NG Patella, V Pham‐Thi, N Regateiro, FS Reitsma, S Rouadi, PW Samolinski, B Sheikh, A Sova, M Todo‐Bom, A Taborda‐Barata, L Toppila‐Salmi, S Sastre, J Tsiligianni, I Valiulis, A Vandenplas, O Wallace, D Waserman, S Yorgancioglu, A Zidarn, M Zuberbier, T Fonseca, JA Bousquet, J |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório do Centro Hospitalar Universitário de Lisboa Central, EPE |
dc.contributor.author.fl_str_mv |
Sousa‐Pinto, B Schünemann, HJ Sá‐Sousa, A Vieira, RJ Amaral, R Anto, JM Klimek, L Czarlewski, W Mullol, J Pfaar, O Bedbrook, A Brussino, L Kvedariene, V Larenas‐Linnemann, DE Okamoto, Y Ventura, MT Agache, I Ansotegui, IJ Bergmann, KC Bosnic‐Anticevich, S Canonica, GW Cardona, V Carreiro‐Martins, P Casale, T Cecchi, L Chivato, T Chu, DK Cingi, C Costa, EM Cruz, AA Del Giacco, S Devillier, P Eklund, P Fokkens, WJ Gemicioglu, B Haahtela, T Ivancevich, JC Ispayeva, Z Jutel, M Kuna, P Kaidashev, I Khaitov, M Kraxner, H Laune, D Lipworth, B Louis, R Makris, M Monti, R Morais‐Almeida, M Mösges, R Niedoszytko, M Papadopoulos, NG Patella, V Pham‐Thi, N Regateiro, FS Reitsma, S Rouadi, PW Samolinski, B Sheikh, A Sova, M Todo‐Bom, A Taborda‐Barata, L Toppila‐Salmi, S Sastre, J Tsiligianni, I Valiulis, A Vandenplas, O Wallace, D Waserman, S Yorgancioglu, A Zidarn, M Zuberbier, T Fonseca, JA Bousquet, J |
dc.subject.por.fl_str_mv |
Longitudinal Studies Rhinitis* / epidemiology Surveys and Questionnaires Telemedicine* Humans HDE ALER |
topic |
Longitudinal Studies Rhinitis* / epidemiology Surveys and Questionnaires Telemedicine* Humans HDE ALER |
description |
Introduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air®, these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air® longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air® data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7 days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age ± SD = 39.1 ± 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-22T09:30:26Z 2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.17/4517 |
url |
http://hdl.handle.net/10400.17/4517 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Allergy. 2023 Apr;78(4):968-983. 10.1111/all.15574 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131639957159936 |