Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study

Detalhes bibliográficos
Autor(a) principal: Sousa‐Pinto, B
Data de Publicação: 2023
Outros Autores: Schünemann, HJ, Sá‐Sousa, A, Vieira, RJ, Amaral, R, Anto, JM, Klimek, L, Czarlewski, W, Mullol, J, Pfaar, O, Bedbrook, A, Brussino, L, Kvedariene, V, Larenas‐Linnemann, DE, Okamoto, Y, Ventura, MT, Agache, I, Ansotegui, IJ, Bergmann, KC, Bosnic‐Anticevich, S, Canonica, GW, Cardona, V, Carreiro‐Martins, P, Casale, T, Cecchi, L, Chivato, T, Chu, DK, Cingi, C, Costa, EM, Cruz, AA, Del Giacco, S, Devillier, P, Eklund, P, Fokkens, WJ, Gemicioglu, B, Haahtela, T, Ivancevich, JC, Ispayeva, Z, Jutel, M, Kuna, P, Kaidashev, I, Khaitov, M, Kraxner, H, Laune, D, Lipworth, B, Louis, R, Makris, M, Monti, R, Morais‐Almeida, M, Mösges, R, Niedoszytko, M, Papadopoulos, NG, Patella, V, Pham‐Thi, N, Regateiro, FS, Reitsma, S, Rouadi, PW, Samolinski, B, Sheikh, A, Sova, M, Todo‐Bom, A, Taborda‐Barata, L, Toppila‐Salmi, S, Sastre, J, Tsiligianni, I, Valiulis, A, Vandenplas, O, Wallace, D, Waserman, S, Yorgancioglu, A, Zidarn, M, Zuberbier, T, Fonseca, JA, Bousquet, J
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.17/4517
Resumo: Introduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air®, these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air® longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air® data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7 days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age ± SD = 39.1 ± 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms.
id RCAP_4241c6d18fed1b3fa64d3fc048c520bb
oai_identifier_str oai:repositorio.chlc.min-saude.pt:10400.17/4517
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal StudyLongitudinal StudiesRhinitis* / epidemiologySurveys and QuestionnairesTelemedicine*HumansHDE ALERIntroduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air®, these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air® longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air® data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7 days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age ± SD = 39.1 ± 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms.WileyRepositório do Centro Hospitalar Universitário de Lisboa Central, EPESousa‐Pinto, BSchünemann, HJSá‐Sousa, AVieira, RJAmaral, RAnto, JMKlimek, LCzarlewski, WMullol, JPfaar, OBedbrook, ABrussino, LKvedariene, VLarenas‐Linnemann, DEOkamoto, YVentura, MTAgache, IAnsotegui, IJBergmann, KCBosnic‐Anticevich, SCanonica, GWCardona, VCarreiro‐Martins, PCasale, TCecchi, LChivato, TChu, DKCingi, CCosta, EMCruz, AADel Giacco, SDevillier, PEklund, PFokkens, WJGemicioglu, BHaahtela, TIvancevich, JCIspayeva, ZJutel, MKuna, PKaidashev, IKhaitov, MKraxner, HLaune, DLipworth, BLouis, RMakris, MMonti, RMorais‐Almeida, MMösges, RNiedoszytko, MPapadopoulos, NGPatella, VPham‐Thi, NRegateiro, FSReitsma, SRouadi, PWSamolinski, BSheikh, ASova, MTodo‐Bom, ATaborda‐Barata, LToppila‐Salmi, SSastre, JTsiligianni, IValiulis, AVandenplas, OWallace, DWaserman, SYorgancioglu, AZidarn, MZuberbier, TFonseca, JABousquet, J2023-05-22T09:30:26Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.17/4517engAllergy. 2023 Apr;78(4):968-983.10.1111/all.15574info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-28T05:20:03Zoai:repositorio.chlc.min-saude.pt:10400.17/4517Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:56:31.767822Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study
title Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study
spellingShingle Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study
Sousa‐Pinto, B
Longitudinal Studies
Rhinitis* / epidemiology
Surveys and Questionnaires
Telemedicine*
Humans
HDE ALER
title_short Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study
title_full Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study
title_fullStr Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study
title_full_unstemmed Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study
title_sort Consistent Trajectories of Rhinitis Control and Treatment in 16,177 Weeks: The MASK‐air® Longitudinal Study
author Sousa‐Pinto, B
author_facet Sousa‐Pinto, B
Schünemann, HJ
Sá‐Sousa, A
Vieira, RJ
Amaral, R
Anto, JM
Klimek, L
Czarlewski, W
Mullol, J
Pfaar, O
Bedbrook, A
Brussino, L
Kvedariene, V
Larenas‐Linnemann, DE
Okamoto, Y
Ventura, MT
Agache, I
Ansotegui, IJ
Bergmann, KC
Bosnic‐Anticevich, S
Canonica, GW
Cardona, V
Carreiro‐Martins, P
Casale, T
Cecchi, L
Chivato, T
Chu, DK
Cingi, C
Costa, EM
Cruz, AA
Del Giacco, S
Devillier, P
Eklund, P
Fokkens, WJ
Gemicioglu, B
Haahtela, T
Ivancevich, JC
Ispayeva, Z
Jutel, M
Kuna, P
Kaidashev, I
Khaitov, M
Kraxner, H
Laune, D
Lipworth, B
Louis, R
Makris, M
Monti, R
Morais‐Almeida, M
Mösges, R
Niedoszytko, M
Papadopoulos, NG
Patella, V
Pham‐Thi, N
Regateiro, FS
Reitsma, S
Rouadi, PW
Samolinski, B
Sheikh, A
Sova, M
Todo‐Bom, A
Taborda‐Barata, L
Toppila‐Salmi, S
Sastre, J
Tsiligianni, I
Valiulis, A
Vandenplas, O
Wallace, D
Waserman, S
Yorgancioglu, A
Zidarn, M
Zuberbier, T
Fonseca, JA
Bousquet, J
author_role author
author2 Schünemann, HJ
Sá‐Sousa, A
Vieira, RJ
Amaral, R
Anto, JM
Klimek, L
Czarlewski, W
Mullol, J
Pfaar, O
Bedbrook, A
Brussino, L
Kvedariene, V
Larenas‐Linnemann, DE
Okamoto, Y
Ventura, MT
Agache, I
Ansotegui, IJ
Bergmann, KC
Bosnic‐Anticevich, S
Canonica, GW
Cardona, V
Carreiro‐Martins, P
Casale, T
Cecchi, L
Chivato, T
Chu, DK
Cingi, C
Costa, EM
Cruz, AA
Del Giacco, S
Devillier, P
Eklund, P
Fokkens, WJ
Gemicioglu, B
Haahtela, T
Ivancevich, JC
Ispayeva, Z
Jutel, M
Kuna, P
Kaidashev, I
Khaitov, M
Kraxner, H
Laune, D
Lipworth, B
Louis, R
Makris, M
Monti, R
Morais‐Almeida, M
Mösges, R
Niedoszytko, M
Papadopoulos, NG
Patella, V
Pham‐Thi, N
Regateiro, FS
Reitsma, S
Rouadi, PW
Samolinski, B
Sheikh, A
Sova, M
Todo‐Bom, A
Taborda‐Barata, L
Toppila‐Salmi, S
Sastre, J
Tsiligianni, I
Valiulis, A
Vandenplas, O
Wallace, D
Waserman, S
Yorgancioglu, A
Zidarn, M
Zuberbier, T
Fonseca, JA
Bousquet, J
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório do Centro Hospitalar Universitário de Lisboa Central, EPE
dc.contributor.author.fl_str_mv Sousa‐Pinto, B
Schünemann, HJ
Sá‐Sousa, A
Vieira, RJ
Amaral, R
Anto, JM
Klimek, L
Czarlewski, W
Mullol, J
Pfaar, O
Bedbrook, A
Brussino, L
Kvedariene, V
Larenas‐Linnemann, DE
Okamoto, Y
Ventura, MT
Agache, I
Ansotegui, IJ
Bergmann, KC
Bosnic‐Anticevich, S
Canonica, GW
Cardona, V
Carreiro‐Martins, P
Casale, T
Cecchi, L
Chivato, T
Chu, DK
Cingi, C
Costa, EM
Cruz, AA
Del Giacco, S
Devillier, P
Eklund, P
Fokkens, WJ
Gemicioglu, B
Haahtela, T
Ivancevich, JC
Ispayeva, Z
Jutel, M
Kuna, P
Kaidashev, I
Khaitov, M
Kraxner, H
Laune, D
Lipworth, B
Louis, R
Makris, M
Monti, R
Morais‐Almeida, M
Mösges, R
Niedoszytko, M
Papadopoulos, NG
Patella, V
Pham‐Thi, N
Regateiro, FS
Reitsma, S
Rouadi, PW
Samolinski, B
Sheikh, A
Sova, M
Todo‐Bom, A
Taborda‐Barata, L
Toppila‐Salmi, S
Sastre, J
Tsiligianni, I
Valiulis, A
Vandenplas, O
Wallace, D
Waserman, S
Yorgancioglu, A
Zidarn, M
Zuberbier, T
Fonseca, JA
Bousquet, J
dc.subject.por.fl_str_mv Longitudinal Studies
Rhinitis* / epidemiology
Surveys and Questionnaires
Telemedicine*
Humans
HDE ALER
topic Longitudinal Studies
Rhinitis* / epidemiology
Surveys and Questionnaires
Telemedicine*
Humans
HDE ALER
description Introduction: Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air®, these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air® longitudinally, clustering weeks according to reported rhinitis symptoms. Methods: We analyzed MASK-air® data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7 days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results. Results: We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age ± SD = 39.1 ± 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control. Conclusions: We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-22T09:30:26Z
2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.17/4517
url http://hdl.handle.net/10400.17/4517
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Allergy. 2023 Apr;78(4):968-983.
10.1111/all.15574
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131639957159936