Decentralized Target Tracking based on Multi-Robot Cooperative Triangulation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/7275 |
Resumo: | Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with incertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target. |
id |
RCAP_431ea910557588a167c335248ee778b3 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/7275 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Decentralized Target Tracking based on Multi-Robot Cooperative TriangulationDecentralised controlImage sensorsMobile robotsMulti-robot systemsRobot visionObject trackingSensor fusionTarget tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with incertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target.IEEERepositório Científico do Instituto Politécnico do PortoDias, AndréCapitan, J.Merino, L.Almeida, JoséLima, PedroSilva, Eduardo2015-12-28T17:02:41Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/7275eng10.1109/ICRA.2015.7139676info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:47:27Zoai:recipp.ipp.pt:10400.22/7275Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:27:35.387431Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Decentralized Target Tracking based on Multi-Robot Cooperative Triangulation |
title |
Decentralized Target Tracking based on Multi-Robot Cooperative Triangulation |
spellingShingle |
Decentralized Target Tracking based on Multi-Robot Cooperative Triangulation Dias, André Decentralised control Image sensors Mobile robots Multi-robot systems Robot vision Object tracking Sensor fusion |
title_short |
Decentralized Target Tracking based on Multi-Robot Cooperative Triangulation |
title_full |
Decentralized Target Tracking based on Multi-Robot Cooperative Triangulation |
title_fullStr |
Decentralized Target Tracking based on Multi-Robot Cooperative Triangulation |
title_full_unstemmed |
Decentralized Target Tracking based on Multi-Robot Cooperative Triangulation |
title_sort |
Decentralized Target Tracking based on Multi-Robot Cooperative Triangulation |
author |
Dias, André |
author_facet |
Dias, André Capitan, J. Merino, L. Almeida, José Lima, Pedro Silva, Eduardo |
author_role |
author |
author2 |
Capitan, J. Merino, L. Almeida, José Lima, Pedro Silva, Eduardo |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Dias, André Capitan, J. Merino, L. Almeida, José Lima, Pedro Silva, Eduardo |
dc.subject.por.fl_str_mv |
Decentralised control Image sensors Mobile robots Multi-robot systems Robot vision Object tracking Sensor fusion |
topic |
Decentralised control Image sensors Mobile robots Multi-robot systems Robot vision Object tracking Sensor fusion |
description |
Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with incertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-28T17:02:41Z 2015 2015-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/7275 |
url |
http://hdl.handle.net/10400.22/7275 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/ICRA.2015.7139676 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131371514363904 |