Using smart edge devices and Big Data analytics for predictive maintenance
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/42065 |
Resumo: | In recent decades, significant emphasis has been placed on improving practices related to industrial equipment maintenance. With the evolution and widespread adoption of the internet of things, various predictive models that utilize data from industrial sensors to forecast the useful life of industrial assets, have been proposed. Predictive maintenance policies aim to leverage these data and predictive models to optimize maintenance scheduling and reduce associated costs. Despite concerted efforts, the adoption of such policies by companies is not as widespread as one might expect. This is due, in part, to certain challenges. Namely, predictive maintenance requires a flexible platform to allow the implementation and customization of predictive models and functionalities in a wide range of industrial environments. Furthermore, existing predictive models in the literature are typically tailored to specific machines or components, limiting their scope of application. Furthermore, their validation is often conducted in controlled environments using synthetic data generated by simulators, which fall short of representing the unpredictable nature of real-world data. Additionally, the complexity of some models renders them as black boxes to maintenance teams, making it difficult to discern the parameters influencing a given prediction. The primary objective of this thesis is to address these challenges. To achieve this, a novel approach called generalized fault trees (GFTs) was proposed and validated in real-world use cases at Bosch and OLI, companies of the Aveiro region. This approach stands out for its versatility in addressing various industrial maintenance issues and for providing a user-friendly graphical representation. The results obtained demonstrate significant reductions in maintenance costs. In addition to GFTs, a new model, combining this approach with a deep learning network, designated k-LSTM-GFT, was proposed for estimating the remaining useful life of industrial assets. It showed superior performance compared to state-of-the-art approaches on benchmark datasets containing multi- ple failure modes. Beyond predictive models, a decentralized architecture based on the use of smart edge devices is proposed for implementing maintenance-related functionalities and collecting industrial data on the shop floor. This architecture is designed to make the maintenance solution adaptable to various distinct scenarios, allowing for generalization not only at the model level but also at the deployment level, thereby attesting its practical utility. |
id |
RCAP_433981895985393c263f7cd27d06c679 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/42065 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Using smart edge devices and Big Data analytics for predictive maintenancePredictive maintenanceGeneralized predictive modelsSmart edge devicesGeneralized fault treesIn recent decades, significant emphasis has been placed on improving practices related to industrial equipment maintenance. With the evolution and widespread adoption of the internet of things, various predictive models that utilize data from industrial sensors to forecast the useful life of industrial assets, have been proposed. Predictive maintenance policies aim to leverage these data and predictive models to optimize maintenance scheduling and reduce associated costs. Despite concerted efforts, the adoption of such policies by companies is not as widespread as one might expect. This is due, in part, to certain challenges. Namely, predictive maintenance requires a flexible platform to allow the implementation and customization of predictive models and functionalities in a wide range of industrial environments. Furthermore, existing predictive models in the literature are typically tailored to specific machines or components, limiting their scope of application. Furthermore, their validation is often conducted in controlled environments using synthetic data generated by simulators, which fall short of representing the unpredictable nature of real-world data. Additionally, the complexity of some models renders them as black boxes to maintenance teams, making it difficult to discern the parameters influencing a given prediction. The primary objective of this thesis is to address these challenges. To achieve this, a novel approach called generalized fault trees (GFTs) was proposed and validated in real-world use cases at Bosch and OLI, companies of the Aveiro region. This approach stands out for its versatility in addressing various industrial maintenance issues and for providing a user-friendly graphical representation. The results obtained demonstrate significant reductions in maintenance costs. In addition to GFTs, a new model, combining this approach with a deep learning network, designated k-LSTM-GFT, was proposed for estimating the remaining useful life of industrial assets. It showed superior performance compared to state-of-the-art approaches on benchmark datasets containing multi- ple failure modes. Beyond predictive models, a decentralized architecture based on the use of smart edge devices is proposed for implementing maintenance-related functionalities and collecting industrial data on the shop floor. This architecture is designed to make the maintenance solution adaptable to various distinct scenarios, allowing for generalization not only at the model level but also at the deployment level, thereby attesting its practical utility.Nas últimas décadas, uma enorme importância tem sido dada à melhoria das práticas relacionadas à manutenção de equipamentos industriais. Com a evolução e disseminação da internet das coisas, diversos modelos preditivos que usam dados de sensores industriais, para prever o tempo de vida útil de equipamentos fabris têm vindo a ser propostos. Políticas de manutenção preditiva pretendem utilizar esses dados, juntamente com modelos preditivos, de modo a otimizar a calendarização de manutenção e diminuir os custos relacionados com a mesma. Apesar dos esforços realizados, a adoção deste tipo de políticas pelas empresas não é tão abrangente como seria de esperar. Tal acontece, devido a alguns desafios. Nomeadamente, a manutenção preditiva requer uma plataforma flexível para permitir a implementação e personalização de modelos preditivos e de outras funcionalidades em diferentes ambientes industriais. Além disso, os modelos preditivos existentes na literatura são bastante específicos para uma determinada máquina ou componente, limitando o seu espectro de uso. Além disso, muitas vezes a validação dos mesmos é feita em ambiente controlado, recorrendo a dados sintéticos, obtidos através de simuladores, que estão longe de representar a natureza imprevisível dos dados reais. A complexidade de alguns modelos faz com que estes sejam vistos pelas equipas de manutenção como caixas negras, uma vez que é difícil identificar os parâmetros que fazem com que o modelo obtenha uma determinada previsão.Esta tese tem como principal objetivo mitigar estes desafios. Para tal, uma nova abordagem, designada de árvores de falha generalizadas (GFTs), foi proposta e validada em casos de uso reais na Bosch e na OLI, empresas da região de Aveiro. Esta abordagem destaca-se pelo facto de poder ser utilizado em diversos problemas de manutenção industrial, e por oferecer uma representação gráfica de fácil entendimento para o comum utilizador. Os resultados obtidos mostram que reduções significativas com custos de manutenção podem ser obtidas. Além das GFTs, foi proposto também um novo modelo que mistura esta abordagem, com uma rede de aprendizagem profunda, designado k-LSTM-GFT para estimar o tempo de vida restante de equipamentos fabris, que demonstrou resultados superiores aos da literatura em problemas de referência que contêm diversos modos de falha. Além dos modelos preditivos, é proposta uma arquitetura descentralizada, baseada na utilização de dispositivos inteligentes, para a implementação de funcionalidades relacionadas com a manutenção e a recolha de dados industriais junto do chão de fábrica. Esta arquitetura é pensada de modo a que a solução de manutenção seja adaptável a vários cenários distintos, permitindo uma generalização, não só a nível dos modelos, mas também das ferramentas para a sua implementação em ambiente real, atestando a sua utilidade prática.2026-05-17T00:00:00Z2024-05-15T00:00:00Z2024-05-15doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/42065engNunes, Pedro Alexandre Almeidainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-08T01:45:36Zoai:ria.ua.pt:10773/42065Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-08T01:45:36Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Using smart edge devices and Big Data analytics for predictive maintenance |
title |
Using smart edge devices and Big Data analytics for predictive maintenance |
spellingShingle |
Using smart edge devices and Big Data analytics for predictive maintenance Nunes, Pedro Alexandre Almeida Predictive maintenance Generalized predictive models Smart edge devices Generalized fault trees |
title_short |
Using smart edge devices and Big Data analytics for predictive maintenance |
title_full |
Using smart edge devices and Big Data analytics for predictive maintenance |
title_fullStr |
Using smart edge devices and Big Data analytics for predictive maintenance |
title_full_unstemmed |
Using smart edge devices and Big Data analytics for predictive maintenance |
title_sort |
Using smart edge devices and Big Data analytics for predictive maintenance |
author |
Nunes, Pedro Alexandre Almeida |
author_facet |
Nunes, Pedro Alexandre Almeida |
author_role |
author |
dc.contributor.author.fl_str_mv |
Nunes, Pedro Alexandre Almeida |
dc.subject.por.fl_str_mv |
Predictive maintenance Generalized predictive models Smart edge devices Generalized fault trees |
topic |
Predictive maintenance Generalized predictive models Smart edge devices Generalized fault trees |
description |
In recent decades, significant emphasis has been placed on improving practices related to industrial equipment maintenance. With the evolution and widespread adoption of the internet of things, various predictive models that utilize data from industrial sensors to forecast the useful life of industrial assets, have been proposed. Predictive maintenance policies aim to leverage these data and predictive models to optimize maintenance scheduling and reduce associated costs. Despite concerted efforts, the adoption of such policies by companies is not as widespread as one might expect. This is due, in part, to certain challenges. Namely, predictive maintenance requires a flexible platform to allow the implementation and customization of predictive models and functionalities in a wide range of industrial environments. Furthermore, existing predictive models in the literature are typically tailored to specific machines or components, limiting their scope of application. Furthermore, their validation is often conducted in controlled environments using synthetic data generated by simulators, which fall short of representing the unpredictable nature of real-world data. Additionally, the complexity of some models renders them as black boxes to maintenance teams, making it difficult to discern the parameters influencing a given prediction. The primary objective of this thesis is to address these challenges. To achieve this, a novel approach called generalized fault trees (GFTs) was proposed and validated in real-world use cases at Bosch and OLI, companies of the Aveiro region. This approach stands out for its versatility in addressing various industrial maintenance issues and for providing a user-friendly graphical representation. The results obtained demonstrate significant reductions in maintenance costs. In addition to GFTs, a new model, combining this approach with a deep learning network, designated k-LSTM-GFT, was proposed for estimating the remaining useful life of industrial assets. It showed superior performance compared to state-of-the-art approaches on benchmark datasets containing multi- ple failure modes. Beyond predictive models, a decentralized architecture based on the use of smart edge devices is proposed for implementing maintenance-related functionalities and collecting industrial data on the shop floor. This architecture is designed to make the maintenance solution adaptable to various distinct scenarios, allowing for generalization not only at the model level but also at the deployment level, thereby attesting its practical utility. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05-15T00:00:00Z 2024-05-15 2026-05-17T00:00:00Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/42065 |
url |
http://hdl.handle.net/10773/42065 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546582026878976 |