Peak Detection and HRV Feature Evaluation on ECG and PPG Signals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/143506 |
Resumo: | Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
id |
RCAP_436a6f3e5d837c71fd131c92649f1a16 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/143506 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Peak Detection and HRV Feature Evaluation on ECG and PPG Signalsbiomedical signal processingECGheart rate variabilityPPGComputer Science (miscellaneous)Chemistry (miscellaneous)Mathematics(all)Physics and Astronomy (miscellaneous)SDG 3 - Good Health and Well-beingPublisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Heart Rate Variability (HRV) evaluates the autonomic nervous system regulation and can be used as a monitoring tool in conditions such as cardiovascular diseases, neuropathies and sleep staging. It can be extracted from the electrocardiogram (ECG) and the photoplethysmogram (PPG) signals. Typically, the HRV is obtained from the ECG processing. Being the PPG sensor widely used in clinical setups for physiological parameters monitoring such as blood oxygenation and ventilatory rate, the question arises regarding the PPG adequacy for HRV extraction. There is not a consensus regarding the PPG being able to replace the ECG in the HRV estimation. This work aims to be a contribution to this research area by comparing the HRV estimation obtained from simultaneously acquired ECG and PPG signals from forty subjects. A peak detection method is herein introduced based on the Hilbert transform: Hilbert Double Envelope Method (HDEM). Two other peak detector methods were also evaluated: Pan-Tompkins and Wavelet-based. HRV parameters for time, frequency and the non-linear domain were calculated for each algorithm and the Pearson correlation, T-test and RMSE were evaluated. The HDEM algorithm showed the best overall results with a sensitivity of 99.07% and 99.45% for the ECG and the PPG signals, respectively. For this algorithm, a high correlation and no significant differences were found between HRV features and the gold standard, for the ECG and PPG signals. The results show that the PPG is a suitable alternative to the ECG for HRV feature extraction.DF – Departamento de FísicaLIBPhys-UNLUNINOVA-Instituto de Desenvolvimento de Novas TecnologiasCTS - Centro de Tecnologia e SistemasRUNEsgalhado, FilipaBatista, ArnaldoVassilenko, ValentinaRusso, SaraOrtigueira, Manuel2022-09-05T22:26:10Z2022-06-012022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article14application/pdfhttp://hdl.handle.net/10362/143506eng2073-8994PURE: 46302618https://doi.org/10.3390/sym14061139info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:04:51Zoai:run.unl.pt:10362/143506Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:04:51Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Peak Detection and HRV Feature Evaluation on ECG and PPG Signals |
title |
Peak Detection and HRV Feature Evaluation on ECG and PPG Signals |
spellingShingle |
Peak Detection and HRV Feature Evaluation on ECG and PPG Signals Esgalhado, Filipa biomedical signal processing ECG heart rate variability PPG Computer Science (miscellaneous) Chemistry (miscellaneous) Mathematics(all) Physics and Astronomy (miscellaneous) SDG 3 - Good Health and Well-being |
title_short |
Peak Detection and HRV Feature Evaluation on ECG and PPG Signals |
title_full |
Peak Detection and HRV Feature Evaluation on ECG and PPG Signals |
title_fullStr |
Peak Detection and HRV Feature Evaluation on ECG and PPG Signals |
title_full_unstemmed |
Peak Detection and HRV Feature Evaluation on ECG and PPG Signals |
title_sort |
Peak Detection and HRV Feature Evaluation on ECG and PPG Signals |
author |
Esgalhado, Filipa |
author_facet |
Esgalhado, Filipa Batista, Arnaldo Vassilenko, Valentina Russo, Sara Ortigueira, Manuel |
author_role |
author |
author2 |
Batista, Arnaldo Vassilenko, Valentina Russo, Sara Ortigueira, Manuel |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
DF – Departamento de Física LIBPhys-UNL UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias CTS - Centro de Tecnologia e Sistemas RUN |
dc.contributor.author.fl_str_mv |
Esgalhado, Filipa Batista, Arnaldo Vassilenko, Valentina Russo, Sara Ortigueira, Manuel |
dc.subject.por.fl_str_mv |
biomedical signal processing ECG heart rate variability PPG Computer Science (miscellaneous) Chemistry (miscellaneous) Mathematics(all) Physics and Astronomy (miscellaneous) SDG 3 - Good Health and Well-being |
topic |
biomedical signal processing ECG heart rate variability PPG Computer Science (miscellaneous) Chemistry (miscellaneous) Mathematics(all) Physics and Astronomy (miscellaneous) SDG 3 - Good Health and Well-being |
description |
Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-05T22:26:10Z 2022-06-01 2022-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/143506 |
url |
http://hdl.handle.net/10362/143506 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2073-8994 PURE: 46302618 https://doi.org/10.3390/sym14061139 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
14 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545884595912704 |