Peak Detection and HRV Feature Evaluation on ECG and PPG Signals

Detalhes bibliográficos
Autor(a) principal: Esgalhado, Filipa
Data de Publicação: 2022
Outros Autores: Batista, Arnaldo, Vassilenko, Valentina, Russo, Sara, Ortigueira, Manuel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/143506
Resumo: Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
id RCAP_436a6f3e5d837c71fd131c92649f1a16
oai_identifier_str oai:run.unl.pt:10362/143506
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Peak Detection and HRV Feature Evaluation on ECG and PPG Signalsbiomedical signal processingECGheart rate variabilityPPGComputer Science (miscellaneous)Chemistry (miscellaneous)Mathematics(all)Physics and Astronomy (miscellaneous)SDG 3 - Good Health and Well-beingPublisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Heart Rate Variability (HRV) evaluates the autonomic nervous system regulation and can be used as a monitoring tool in conditions such as cardiovascular diseases, neuropathies and sleep staging. It can be extracted from the electrocardiogram (ECG) and the photoplethysmogram (PPG) signals. Typically, the HRV is obtained from the ECG processing. Being the PPG sensor widely used in clinical setups for physiological parameters monitoring such as blood oxygenation and ventilatory rate, the question arises regarding the PPG adequacy for HRV extraction. There is not a consensus regarding the PPG being able to replace the ECG in the HRV estimation. This work aims to be a contribution to this research area by comparing the HRV estimation obtained from simultaneously acquired ECG and PPG signals from forty subjects. A peak detection method is herein introduced based on the Hilbert transform: Hilbert Double Envelope Method (HDEM). Two other peak detector methods were also evaluated: Pan-Tompkins and Wavelet-based. HRV parameters for time, frequency and the non-linear domain were calculated for each algorithm and the Pearson correlation, T-test and RMSE were evaluated. The HDEM algorithm showed the best overall results with a sensitivity of 99.07% and 99.45% for the ECG and the PPG signals, respectively. For this algorithm, a high correlation and no significant differences were found between HRV features and the gold standard, for the ECG and PPG signals. The results show that the PPG is a suitable alternative to the ECG for HRV feature extraction.DF – Departamento de FísicaLIBPhys-UNLUNINOVA-Instituto de Desenvolvimento de Novas TecnologiasCTS - Centro de Tecnologia e SistemasRUNEsgalhado, FilipaBatista, ArnaldoVassilenko, ValentinaRusso, SaraOrtigueira, Manuel2022-09-05T22:26:10Z2022-06-012022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article14application/pdfhttp://hdl.handle.net/10362/143506eng2073-8994PURE: 46302618https://doi.org/10.3390/sym14061139info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:04:51Zoai:run.unl.pt:10362/143506Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:04:51Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Peak Detection and HRV Feature Evaluation on ECG and PPG Signals
title Peak Detection and HRV Feature Evaluation on ECG and PPG Signals
spellingShingle Peak Detection and HRV Feature Evaluation on ECG and PPG Signals
Esgalhado, Filipa
biomedical signal processing
ECG
heart rate variability
PPG
Computer Science (miscellaneous)
Chemistry (miscellaneous)
Mathematics(all)
Physics and Astronomy (miscellaneous)
SDG 3 - Good Health and Well-being
title_short Peak Detection and HRV Feature Evaluation on ECG and PPG Signals
title_full Peak Detection and HRV Feature Evaluation on ECG and PPG Signals
title_fullStr Peak Detection and HRV Feature Evaluation on ECG and PPG Signals
title_full_unstemmed Peak Detection and HRV Feature Evaluation on ECG and PPG Signals
title_sort Peak Detection and HRV Feature Evaluation on ECG and PPG Signals
author Esgalhado, Filipa
author_facet Esgalhado, Filipa
Batista, Arnaldo
Vassilenko, Valentina
Russo, Sara
Ortigueira, Manuel
author_role author
author2 Batista, Arnaldo
Vassilenko, Valentina
Russo, Sara
Ortigueira, Manuel
author2_role author
author
author
author
dc.contributor.none.fl_str_mv DF – Departamento de Física
LIBPhys-UNL
UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias
CTS - Centro de Tecnologia e Sistemas
RUN
dc.contributor.author.fl_str_mv Esgalhado, Filipa
Batista, Arnaldo
Vassilenko, Valentina
Russo, Sara
Ortigueira, Manuel
dc.subject.por.fl_str_mv biomedical signal processing
ECG
heart rate variability
PPG
Computer Science (miscellaneous)
Chemistry (miscellaneous)
Mathematics(all)
Physics and Astronomy (miscellaneous)
SDG 3 - Good Health and Well-being
topic biomedical signal processing
ECG
heart rate variability
PPG
Computer Science (miscellaneous)
Chemistry (miscellaneous)
Mathematics(all)
Physics and Astronomy (miscellaneous)
SDG 3 - Good Health and Well-being
description Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-05T22:26:10Z
2022-06-01
2022-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/143506
url http://hdl.handle.net/10362/143506
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2073-8994
PURE: 46302618
https://doi.org/10.3390/sym14061139
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 14
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545884595912704