New variational problems with an action depending on generalized fractional derivatives, the free endpoint conditions, and a real parameter
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/31119 |
Resumo: | This work presents optimality conditions for several fractional variational problems where the Lagrange function depends on fractional order operators, the initial and final state values, and a free parameter. The fractional derivatives considered in this paper are the Riemann–Liouville and the Caputo derivatives with respect to an arbitrary kernel. The new variational problems studied here are generalizations of several types of variational problems, and therefore, our results generalize well-known results from the fractional calculus of variations. Namely, we prove conditions useful to determine the optimal orders of the fractional derivatives and necessary optimality conditions involving time delays and arbitrary real positive fractional orders. Sufficient conditions for such problems are also studied. Illustrative examples are provided. |
id |
RCAP_438509d7fb7b9b0ce8ca8852864d83c8 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31119 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
New variational problems with an action depending on generalized fractional derivatives, the free endpoint conditions, and a real parameterFractional calculusEuler–Lagrange equationNatural boundary conditionsTime delayThis work presents optimality conditions for several fractional variational problems where the Lagrange function depends on fractional order operators, the initial and final state values, and a free parameter. The fractional derivatives considered in this paper are the Riemann–Liouville and the Caputo derivatives with respect to an arbitrary kernel. The new variational problems studied here are generalizations of several types of variational problems, and therefore, our results generalize well-known results from the fractional calculus of variations. Namely, we prove conditions useful to determine the optimal orders of the fractional derivatives and necessary optimality conditions involving time delays and arbitrary real positive fractional orders. Sufficient conditions for such problems are also studied. Illustrative examples are provided.MDPI2021-04-06T18:34:30Z2021-01-01T00:00:00Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31119eng10.3390/sym13040592Almeida, RicardoMartins, Natáliainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:05Zoai:ria.ua.pt:10773/31119Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:04.687934Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
New variational problems with an action depending on generalized fractional derivatives, the free endpoint conditions, and a real parameter |
title |
New variational problems with an action depending on generalized fractional derivatives, the free endpoint conditions, and a real parameter |
spellingShingle |
New variational problems with an action depending on generalized fractional derivatives, the free endpoint conditions, and a real parameter Almeida, Ricardo Fractional calculus Euler–Lagrange equation Natural boundary conditions Time delay |
title_short |
New variational problems with an action depending on generalized fractional derivatives, the free endpoint conditions, and a real parameter |
title_full |
New variational problems with an action depending on generalized fractional derivatives, the free endpoint conditions, and a real parameter |
title_fullStr |
New variational problems with an action depending on generalized fractional derivatives, the free endpoint conditions, and a real parameter |
title_full_unstemmed |
New variational problems with an action depending on generalized fractional derivatives, the free endpoint conditions, and a real parameter |
title_sort |
New variational problems with an action depending on generalized fractional derivatives, the free endpoint conditions, and a real parameter |
author |
Almeida, Ricardo |
author_facet |
Almeida, Ricardo Martins, Natália |
author_role |
author |
author2 |
Martins, Natália |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Ricardo Martins, Natália |
dc.subject.por.fl_str_mv |
Fractional calculus Euler–Lagrange equation Natural boundary conditions Time delay |
topic |
Fractional calculus Euler–Lagrange equation Natural boundary conditions Time delay |
description |
This work presents optimality conditions for several fractional variational problems where the Lagrange function depends on fractional order operators, the initial and final state values, and a free parameter. The fractional derivatives considered in this paper are the Riemann–Liouville and the Caputo derivatives with respect to an arbitrary kernel. The new variational problems studied here are generalizations of several types of variational problems, and therefore, our results generalize well-known results from the fractional calculus of variations. Namely, we prove conditions useful to determine the optimal orders of the fractional derivatives and necessary optimality conditions involving time delays and arbitrary real positive fractional orders. Sufficient conditions for such problems are also studied. Illustrative examples are provided. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-06T18:34:30Z 2021-01-01T00:00:00Z 2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31119 |
url |
http://hdl.handle.net/10773/31119 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/sym13040592 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137686329491456 |