A Use Case of Patent Classification Using Deep Learning with Transfer Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/143348 |
Resumo: | Henriques, R., Ferreira, A., & Castelli, M. (2022). A Use Case of Patent Classification Using Deep Learning with Transfer Learning. Journal of Data and Information Science, 7(3), 49-70. https://doi.org/10.2478/jdis-2022-0015 ----- Funding Information: This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. |
id |
RCAP_438fc63cb5f5ed839c2a3f7cee411ade |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/143348 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Use Case of Patent Classification Using Deep Learning with Transfer LearningBi-directional Encoder Representations for Transformers (BERT)Natural Language Processing (NLP)Patent classificationTransfer LearningPublic AdministrationLibrary and Information SciencesInformation Systems and ManagementHenriques, R., Ferreira, A., & Castelli, M. (2022). A Use Case of Patent Classification Using Deep Learning with Transfer Learning. Journal of Data and Information Science, 7(3), 49-70. https://doi.org/10.2478/jdis-2022-0015 ----- Funding Information: This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.Purpose: Patent classification is one of the areas in Intellectual Property Analytics (IPA), and a growing use case since the number of patent applications has been increasing worldwide. We propose using machine learning algorithms to classify Portuguese patents and evaluate the performance of transfer learning methodologies to solve this task. Design/methodology/approach: We applied three different approaches in this paper. First, we used a dataset available by INPI to explore traditional machine learning algorithms and ensemble methods. After preprocessing data by applying TF-IDF, FastText and Doc2Vec, the models were evaluated by cross-validation in 5 folds. In a second approach, we used two different Neural Networks architectures, a Convolutional Neural Network (CNN) and a bi-directional Long Short-Term Memory (BiLSTM). Finally, we used pre-trained BERT, DistilBERT, and ULMFiT models in the third approach. Findings: BERTTimbau, a BERT architecture model pre-trained on a large Portuguese corpus, presented the best results for the task, even though with a performance of only 4% superior to a LinearSVC model using TF-IDF feature engineering. Research limitations: The dataset was highly imbalanced, as usual in patent applications, so the classes with the lowest samples were expected to present the worst performance. That result happened in some cases, especially in classes with less than 60 training samples. Practical implications: Patent classification is challenging because of the hierarchical classification system, the context overlap, and the underrepresentation of the classes. However, the final model presented an acceptable performance given the size of the dataset and the task complexity. This model can support the decision and improve the time by proposing a category in the second level of ICP, which is one of the critical phases of the grant patent process. Originality/value: To our knowledge, the proposed models were never implemented for Portuguese patent classification.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNHenriques, RobertoFerreira, AdriaCastelli, Mauro2022-08-29T22:32:38Z2022-08-012022-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article22application/pdfhttp://hdl.handle.net/10362/143348eng2096-157XPURE: 46198486https://doi.org/10.2478/jdis-2022-0015info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:21:39Zoai:run.unl.pt:10362/143348Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:50:53.734023Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Use Case of Patent Classification Using Deep Learning with Transfer Learning |
title |
A Use Case of Patent Classification Using Deep Learning with Transfer Learning |
spellingShingle |
A Use Case of Patent Classification Using Deep Learning with Transfer Learning Henriques, Roberto Bi-directional Encoder Representations for Transformers (BERT) Natural Language Processing (NLP) Patent classification Transfer Learning Public Administration Library and Information Sciences Information Systems and Management |
title_short |
A Use Case of Patent Classification Using Deep Learning with Transfer Learning |
title_full |
A Use Case of Patent Classification Using Deep Learning with Transfer Learning |
title_fullStr |
A Use Case of Patent Classification Using Deep Learning with Transfer Learning |
title_full_unstemmed |
A Use Case of Patent Classification Using Deep Learning with Transfer Learning |
title_sort |
A Use Case of Patent Classification Using Deep Learning with Transfer Learning |
author |
Henriques, Roberto |
author_facet |
Henriques, Roberto Ferreira, Adria Castelli, Mauro |
author_role |
author |
author2 |
Ferreira, Adria Castelli, Mauro |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Henriques, Roberto Ferreira, Adria Castelli, Mauro |
dc.subject.por.fl_str_mv |
Bi-directional Encoder Representations for Transformers (BERT) Natural Language Processing (NLP) Patent classification Transfer Learning Public Administration Library and Information Sciences Information Systems and Management |
topic |
Bi-directional Encoder Representations for Transformers (BERT) Natural Language Processing (NLP) Patent classification Transfer Learning Public Administration Library and Information Sciences Information Systems and Management |
description |
Henriques, R., Ferreira, A., & Castelli, M. (2022). A Use Case of Patent Classification Using Deep Learning with Transfer Learning. Journal of Data and Information Science, 7(3), 49-70. https://doi.org/10.2478/jdis-2022-0015 ----- Funding Information: This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-29T22:32:38Z 2022-08-01 2022-08-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/143348 |
url |
http://hdl.handle.net/10362/143348 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2096-157X PURE: 46198486 https://doi.org/10.2478/jdis-2022-0015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
22 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138103968923648 |