Detection of garbage outside of the deposition equipment: A study on classification-based and object detection-based computer vision approaches
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/30320 |
Resumo: | Excessive waste accumulation is a problem in large cities and capitals where urban waste production is high. This problem leads waste collection teams to make a greater effort to combat the situation. Therefore, this dissertation proposes two waste identification systems, which will be compared, to solve this problem in Portugal’s capital. The main objective of this proposal is to facilitate the work of waste collection in the city of Lisbon, which is carried out by the teams of the Lisbon Waste Collection Centers. In order to facilitate and help waste collection, Lisbon City Council collaborated with the collection team inspectors and created ”LxDataLab”, a platform that provides a variety of datasets. The images are taken from smartphone cameras by the collection crews and are usually taken from moving vehicles or even local residents. Image processing is carried out differently in the two systems created. The patch-based garbage detector system uses the original images, changes their resolution and splits the image into several sub-images that contain a portion of the altered image. This system uses hand-made, pre-trained neural networks and different methods to obtain the results using the dataset of sub- images. The other system, called the object detection-based system, uses the original images and evaluates them using an algorithm called yolov5. Finally, a fair comparison is made between the two systems to determine which is the most effective by evaluating the accuracy and loss values. |
id |
RCAP_43adbadf97d7cc082d9892900126af0a |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/30320 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Detection of garbage outside of the deposition equipment: A study on classification-based and object detection-based computer vision approachesRedes neuronais -- Neural networksWasteVisão computacional -- Computer visionIdentificationGarbageMachine learningResíduosIdentificaçãoLixoExcessive waste accumulation is a problem in large cities and capitals where urban waste production is high. This problem leads waste collection teams to make a greater effort to combat the situation. Therefore, this dissertation proposes two waste identification systems, which will be compared, to solve this problem in Portugal’s capital. The main objective of this proposal is to facilitate the work of waste collection in the city of Lisbon, which is carried out by the teams of the Lisbon Waste Collection Centers. In order to facilitate and help waste collection, Lisbon City Council collaborated with the collection team inspectors and created ”LxDataLab”, a platform that provides a variety of datasets. The images are taken from smartphone cameras by the collection crews and are usually taken from moving vehicles or even local residents. Image processing is carried out differently in the two systems created. The patch-based garbage detector system uses the original images, changes their resolution and splits the image into several sub-images that contain a portion of the altered image. This system uses hand-made, pre-trained neural networks and different methods to obtain the results using the dataset of sub- images. The other system, called the object detection-based system, uses the original images and evaluates them using an algorithm called yolov5. Finally, a fair comparison is made between the two systems to determine which is the most effective by evaluating the accuracy and loss values.O excesso de acumulação de lixo é um problema em grandes cidades onde a produção de resíduos urbanos é elevada. Este problema leva a que as equipas de recolha de lixo realizem um maior esforço para combater tal situação. Sendo assim, nesta dissertação é proposto dois sistemas de identificação de lixo, que serão comparadas, para solucionar este problema na capital de Portugal. O objetivo principal desta proposta é facilitar o trabalho de recolha de resíduos na cidade de Lisboa, trabalho este realizado pelas equipas dos Centros de Recolha de Resíduos de Lisboa. Com o intuito de facilitar e aju- dar a coleta de resíduos, a Câmara Municipal de Lisboa colaborou com os inspetores da equipe de coleta e criou a ”LxDataLab”, uma plataforma que disponibiliza uma variedade de datasets. As fotos são tiradas de câmaras fotográficas de smartphones pelas equipes de recolha e normalmente são tiradas de veículos em movimento ou até mesmo de res- identes locais. O processamento das imagens é realizado de forma diferente em ambos os sistemas criados. Um dos sistemas utiliza as imagens originais, muda a sua resolução e reparte a imagens em várias sub-imagens que contêm uma porção da imagem alterada. Neste sistema é usado redes neuronais feitas e á mão e outras pré-treinadas e difer- entes métodos para obter os resultados usando o dataset das sub-imagens. Enquanto que no outro sistema, usa as imagens originais e faz a sua avalição usando um algoritmo chamado de yolov5. Por fim, é feito uma comparação justa entre os dois sistemas para determinar qual é o mais eficaz avaliando os valores de precisão e loss.2024-01-10T15:41:16Z2023-12-05T00:00:00Z2023-12-052023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30320TID:203439902engSoares, Gonçalo Filipe Constantinoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-14T01:17:17Zoai:repositorio.iscte-iul.pt:10071/30320Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:40:22.505143Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Detection of garbage outside of the deposition equipment: A study on classification-based and object detection-based computer vision approaches |
title |
Detection of garbage outside of the deposition equipment: A study on classification-based and object detection-based computer vision approaches |
spellingShingle |
Detection of garbage outside of the deposition equipment: A study on classification-based and object detection-based computer vision approaches Soares, Gonçalo Filipe Constantino Redes neuronais -- Neural networks Waste Visão computacional -- Computer vision Identification Garbage Machine learning Resíduos Identificação Lixo |
title_short |
Detection of garbage outside of the deposition equipment: A study on classification-based and object detection-based computer vision approaches |
title_full |
Detection of garbage outside of the deposition equipment: A study on classification-based and object detection-based computer vision approaches |
title_fullStr |
Detection of garbage outside of the deposition equipment: A study on classification-based and object detection-based computer vision approaches |
title_full_unstemmed |
Detection of garbage outside of the deposition equipment: A study on classification-based and object detection-based computer vision approaches |
title_sort |
Detection of garbage outside of the deposition equipment: A study on classification-based and object detection-based computer vision approaches |
author |
Soares, Gonçalo Filipe Constantino |
author_facet |
Soares, Gonçalo Filipe Constantino |
author_role |
author |
dc.contributor.author.fl_str_mv |
Soares, Gonçalo Filipe Constantino |
dc.subject.por.fl_str_mv |
Redes neuronais -- Neural networks Waste Visão computacional -- Computer vision Identification Garbage Machine learning Resíduos Identificação Lixo |
topic |
Redes neuronais -- Neural networks Waste Visão computacional -- Computer vision Identification Garbage Machine learning Resíduos Identificação Lixo |
description |
Excessive waste accumulation is a problem in large cities and capitals where urban waste production is high. This problem leads waste collection teams to make a greater effort to combat the situation. Therefore, this dissertation proposes two waste identification systems, which will be compared, to solve this problem in Portugal’s capital. The main objective of this proposal is to facilitate the work of waste collection in the city of Lisbon, which is carried out by the teams of the Lisbon Waste Collection Centers. In order to facilitate and help waste collection, Lisbon City Council collaborated with the collection team inspectors and created ”LxDataLab”, a platform that provides a variety of datasets. The images are taken from smartphone cameras by the collection crews and are usually taken from moving vehicles or even local residents. Image processing is carried out differently in the two systems created. The patch-based garbage detector system uses the original images, changes their resolution and splits the image into several sub-images that contain a portion of the altered image. This system uses hand-made, pre-trained neural networks and different methods to obtain the results using the dataset of sub- images. The other system, called the object detection-based system, uses the original images and evaluates them using an algorithm called yolov5. Finally, a fair comparison is made between the two systems to determine which is the most effective by evaluating the accuracy and loss values. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-05T00:00:00Z 2023-12-05 2023-10 2024-01-10T15:41:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/30320 TID:203439902 |
url |
http://hdl.handle.net/10071/30320 |
identifier_str_mv |
TID:203439902 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136892676997120 |