Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars

Detalhes bibliográficos
Autor(a) principal: Aparicio-Arroyo, Marta
Data de Publicação: 2018
Outros Autores: Bradlow, Steven, Collier, Brian, García-Prada, Oscar, Gothen, Peter, Oliveira, André
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10348/8449
Resumo: For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO(p,q) with 2 < p < q. These groups lie outside formerly know classes of groups associated with exotic components.
id RCAP_443da6bb0750ea9407e51e2e1d2b95b5
oai_identifier_str oai:repositorio.utad.pt:10348/8449
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatarsFor semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO(p,q) with 2 < p < q. These groups lie outside formerly know classes of groups associated with exotic components.2018-05-18T14:15:41Z2018-01-01T00:00:00Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10348/8449engAparicio-Arroyo, MartaBradlow, StevenCollier, BrianGarcía-Prada, OscarGothen, PeterOliveira, Andréinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-02T12:38:16Zoai:repositorio.utad.pt:10348/8449Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:01:59.334669Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars
title Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars
spellingShingle Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars
Aparicio-Arroyo, Marta
title_short Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars
title_full Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars
title_fullStr Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars
title_full_unstemmed Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars
title_sort Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars
author Aparicio-Arroyo, Marta
author_facet Aparicio-Arroyo, Marta
Bradlow, Steven
Collier, Brian
García-Prada, Oscar
Gothen, Peter
Oliveira, André
author_role author
author2 Bradlow, Steven
Collier, Brian
García-Prada, Oscar
Gothen, Peter
Oliveira, André
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Aparicio-Arroyo, Marta
Bradlow, Steven
Collier, Brian
García-Prada, Oscar
Gothen, Peter
Oliveira, André
description For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO(p,q) with 2 < p < q. These groups lie outside formerly know classes of groups associated with exotic components.
publishDate 2018
dc.date.none.fl_str_mv 2018-05-18T14:15:41Z
2018-01-01T00:00:00Z
2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10348/8449
url http://hdl.handle.net/10348/8449
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137104920313856