Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10348/8449 |
Resumo: | For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO(p,q) with 2 < p < q. These groups lie outside formerly know classes of groups associated with exotic components. |
id |
RCAP_443da6bb0750ea9407e51e2e1d2b95b5 |
---|---|
oai_identifier_str |
oai:repositorio.utad.pt:10348/8449 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatarsFor semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO(p,q) with 2 < p < q. These groups lie outside formerly know classes of groups associated with exotic components.2018-05-18T14:15:41Z2018-01-01T00:00:00Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10348/8449engAparicio-Arroyo, MartaBradlow, StevenCollier, BrianGarcía-Prada, OscarGothen, PeterOliveira, Andréinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-02T12:38:16Zoai:repositorio.utad.pt:10348/8449Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:01:59.334669Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
title |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
spellingShingle |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars Aparicio-Arroyo, Marta |
title_short |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
title_full |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
title_fullStr |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
title_full_unstemmed |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
title_sort |
Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars |
author |
Aparicio-Arroyo, Marta |
author_facet |
Aparicio-Arroyo, Marta Bradlow, Steven Collier, Brian García-Prada, Oscar Gothen, Peter Oliveira, André |
author_role |
author |
author2 |
Bradlow, Steven Collier, Brian García-Prada, Oscar Gothen, Peter Oliveira, André |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Aparicio-Arroyo, Marta Bradlow, Steven Collier, Brian García-Prada, Oscar Gothen, Peter Oliveira, André |
description |
For semisimple Lie groups, moduli spaces of Higgs bundles on a Riemann surface correspond to representation varieties for the surface fundamental group. In many cases, natural topological invariants label connected components of the moduli spaces. Hitchin representations into split real forms, and maximal representations into Hermitian Lie groups, are the only previously know cases where natural invariants do not fully distinguish connected components. In this note we announce the existence of new such exotic components in the moduli spaces for the groups SO(p,q) with 2 < p < q. These groups lie outside formerly know classes of groups associated with exotic components. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05-18T14:15:41Z 2018-01-01T00:00:00Z 2018 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10348/8449 |
url |
http://hdl.handle.net/10348/8449 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137104920313856 |