A new durability assessment methodology of thermal mortars applied in multilayer rendering systems

Detalhes bibliográficos
Autor(a) principal: Joana Maia
Data de Publicação: 2019
Outros Autores: Nuno M. M.Ramos, R. Veiga
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/129273
Resumo: The increase of the thermal resistance of building envelopes is a result from the growing demand of energy efficiency. Several new materials and systems emerged in recent years as an answer to that growing need. Thermal mortars applied in thermal rendering systems are an example of how the research community and the building industry try to tackle that challenge. A gap in the durability assessment of thermal rendering systems can however be observed. The existing standardization for the durability assessment of mortars does not allow a consistent evaluation of thermal mortars, especially in multilayer systems. As such, the main goal of the present work consists in proposing a durability assessment methodology of thermal mortars applied as multilayer systems. Accelerated ageing cycles, directly applicable to thermal mortars, were developed through numerical simulation, taking into account material properties, climatic conditions and consequent degradation mechanisms to which the system is subjected. A theoretical methodology for the determination of heat-cold cycles that can represent specific climatic conditions was developed. The implementation of the developed accelerated ageing cycles and the obtained experimental results contributed to the definition of a new durability assessment methodology. This methodology defines the accelerated ageing cycles that should be performed in each climate zone, representative of the main degradation mechanisms. One of the major advantages is the temperature adaption of the accelerated ageing cycles to the climatic conditions. The new methodology contributes to the evaluation of new solutions, during their development stage, and to their adequacy for specific climatic conditions.
id RCAP_443eab82bdeec96ea0b817a324c8d0ad
oai_identifier_str oai:repositorio-aberto.up.pt:10216/129273
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A new durability assessment methodology of thermal mortars applied in multilayer rendering systemsThe increase of the thermal resistance of building envelopes is a result from the growing demand of energy efficiency. Several new materials and systems emerged in recent years as an answer to that growing need. Thermal mortars applied in thermal rendering systems are an example of how the research community and the building industry try to tackle that challenge. A gap in the durability assessment of thermal rendering systems can however be observed. The existing standardization for the durability assessment of mortars does not allow a consistent evaluation of thermal mortars, especially in multilayer systems. As such, the main goal of the present work consists in proposing a durability assessment methodology of thermal mortars applied as multilayer systems. Accelerated ageing cycles, directly applicable to thermal mortars, were developed through numerical simulation, taking into account material properties, climatic conditions and consequent degradation mechanisms to which the system is subjected. A theoretical methodology for the determination of heat-cold cycles that can represent specific climatic conditions was developed. The implementation of the developed accelerated ageing cycles and the obtained experimental results contributed to the definition of a new durability assessment methodology. This methodology defines the accelerated ageing cycles that should be performed in each climate zone, representative of the main degradation mechanisms. One of the major advantages is the temperature adaption of the accelerated ageing cycles to the climatic conditions. The new methodology contributes to the evaluation of new solutions, during their development stage, and to their adequacy for specific climatic conditions.2019-10-202019-10-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/129273eng0950-061810.1016/j.conbuildmat.2019.06.178Joana MaiaNuno M. M.RamosR. Veigainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:37:40Zoai:repositorio-aberto.up.pt:10216/129273Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:28:09.188865Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A new durability assessment methodology of thermal mortars applied in multilayer rendering systems
title A new durability assessment methodology of thermal mortars applied in multilayer rendering systems
spellingShingle A new durability assessment methodology of thermal mortars applied in multilayer rendering systems
Joana Maia
title_short A new durability assessment methodology of thermal mortars applied in multilayer rendering systems
title_full A new durability assessment methodology of thermal mortars applied in multilayer rendering systems
title_fullStr A new durability assessment methodology of thermal mortars applied in multilayer rendering systems
title_full_unstemmed A new durability assessment methodology of thermal mortars applied in multilayer rendering systems
title_sort A new durability assessment methodology of thermal mortars applied in multilayer rendering systems
author Joana Maia
author_facet Joana Maia
Nuno M. M.Ramos
R. Veiga
author_role author
author2 Nuno M. M.Ramos
R. Veiga
author2_role author
author
dc.contributor.author.fl_str_mv Joana Maia
Nuno M. M.Ramos
R. Veiga
description The increase of the thermal resistance of building envelopes is a result from the growing demand of energy efficiency. Several new materials and systems emerged in recent years as an answer to that growing need. Thermal mortars applied in thermal rendering systems are an example of how the research community and the building industry try to tackle that challenge. A gap in the durability assessment of thermal rendering systems can however be observed. The existing standardization for the durability assessment of mortars does not allow a consistent evaluation of thermal mortars, especially in multilayer systems. As such, the main goal of the present work consists in proposing a durability assessment methodology of thermal mortars applied as multilayer systems. Accelerated ageing cycles, directly applicable to thermal mortars, were developed through numerical simulation, taking into account material properties, climatic conditions and consequent degradation mechanisms to which the system is subjected. A theoretical methodology for the determination of heat-cold cycles that can represent specific climatic conditions was developed. The implementation of the developed accelerated ageing cycles and the obtained experimental results contributed to the definition of a new durability assessment methodology. This methodology defines the accelerated ageing cycles that should be performed in each climate zone, representative of the main degradation mechanisms. One of the major advantages is the temperature adaption of the accelerated ageing cycles to the climatic conditions. The new methodology contributes to the evaluation of new solutions, during their development stage, and to their adequacy for specific climatic conditions.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-20
2019-10-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/129273
url https://hdl.handle.net/10216/129273
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0950-0618
10.1016/j.conbuildmat.2019.06.178
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136193222279169