Statistical and Machine Learning Techniques in Human Microbiome Studies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/115893 |
Resumo: | CA18131 CP16/00163 NIS-3317 NIS-3318 decision 295741 C18/BM/12585940 |
id |
RCAP_446231865a859996d39699c2d1db5c02 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/115893 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Statistical and Machine Learning Techniques in Human Microbiome StudiesContemporary Challenges and Solutionsbiomarker identificationmachine learningmicrobiomeML4Microbiomepersonalized medicineMicrobiologyMicrobiology (medical)CA18131 CP16/00163 NIS-3317 NIS-3318 decision 295741 C18/BM/12585940The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 “ML4Microbiome” that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.NOVALincsNOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)RUNML4Microbiome2021-04-20T22:51:28Z2021-02-222021-02-22T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/115893eng1664-302XPURE: 29298455https://doi.org/10.3389/fmicb.2021.635781info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:58:28Zoai:run.unl.pt:10362/115893Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:42:52.599535Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Statistical and Machine Learning Techniques in Human Microbiome Studies Contemporary Challenges and Solutions |
title |
Statistical and Machine Learning Techniques in Human Microbiome Studies |
spellingShingle |
Statistical and Machine Learning Techniques in Human Microbiome Studies ML4Microbiome biomarker identification machine learning microbiome ML4Microbiome personalized medicine Microbiology Microbiology (medical) |
title_short |
Statistical and Machine Learning Techniques in Human Microbiome Studies |
title_full |
Statistical and Machine Learning Techniques in Human Microbiome Studies |
title_fullStr |
Statistical and Machine Learning Techniques in Human Microbiome Studies |
title_full_unstemmed |
Statistical and Machine Learning Techniques in Human Microbiome Studies |
title_sort |
Statistical and Machine Learning Techniques in Human Microbiome Studies |
author |
ML4Microbiome |
author_facet |
ML4Microbiome |
author_role |
author |
dc.contributor.none.fl_str_mv |
NOVALincs NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM) RUN |
dc.contributor.author.fl_str_mv |
ML4Microbiome |
dc.subject.por.fl_str_mv |
biomarker identification machine learning microbiome ML4Microbiome personalized medicine Microbiology Microbiology (medical) |
topic |
biomarker identification machine learning microbiome ML4Microbiome personalized medicine Microbiology Microbiology (medical) |
description |
CA18131 CP16/00163 NIS-3317 NIS-3318 decision 295741 C18/BM/12585940 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-20T22:51:28Z 2021-02-22 2021-02-22T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/115893 |
url |
http://hdl.handle.net/10362/115893 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1664-302X PURE: 29298455 https://doi.org/10.3389/fmicb.2021.635781 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138039792926721 |