The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfaces

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Maria Manuela Fernandes
Data de Publicação: 2019
Outros Autores: Vieira, Nelson Felipe
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/25920
Resumo: In this paper we establish some new fractional differential properties for a class of fractional circle polynomials. We apply the Zernike polynomials and a new class of fractional circle polynomials in modeling ophthalmic surfaces in visual optics and we compare the obtained results. The total RMS error is presented when addressing capability of these functions in fitting with surfaces, and it is showed that the new fractional circle polynomials can be used as an alternative to the Zernike Polynomials to represent the complete anterior corneal surface.
id RCAP_449fd638656114b79ea52390a82898d4
oai_identifier_str oai:ria.ua.pt:10773/25920
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfacesZernike polynomialsFractional circle polynomialsophthalmic surfacesIn this paper we establish some new fractional differential properties for a class of fractional circle polynomials. We apply the Zernike polynomials and a new class of fractional circle polynomials in modeling ophthalmic surfaces in visual optics and we compare the obtained results. The total RMS error is presented when addressing capability of these functions in fitting with surfaces, and it is showed that the new fractional circle polynomials can be used as an alternative to the Zernike Polynomials to represent the complete anterior corneal surface.IOP Publishing2019-05-06T10:44:36Z2019-01-01T00:00:00Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/25920eng1742-658810.1088/1742-6596/1194/1/012094Rodrigues, Maria Manuela FernandesVieira, Nelson Felipeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:06Zoai:ria.ua.pt:10773/25920Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:00.534877Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfaces
title The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfaces
spellingShingle The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfaces
Rodrigues, Maria Manuela Fernandes
Zernike polynomials
Fractional circle polynomials
ophthalmic surfaces
title_short The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfaces
title_full The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfaces
title_fullStr The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfaces
title_full_unstemmed The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfaces
title_sort The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfaces
author Rodrigues, Maria Manuela Fernandes
author_facet Rodrigues, Maria Manuela Fernandes
Vieira, Nelson Felipe
author_role author
author2 Vieira, Nelson Felipe
author2_role author
dc.contributor.author.fl_str_mv Rodrigues, Maria Manuela Fernandes
Vieira, Nelson Felipe
dc.subject.por.fl_str_mv Zernike polynomials
Fractional circle polynomials
ophthalmic surfaces
topic Zernike polynomials
Fractional circle polynomials
ophthalmic surfaces
description In this paper we establish some new fractional differential properties for a class of fractional circle polynomials. We apply the Zernike polynomials and a new class of fractional circle polynomials in modeling ophthalmic surfaces in visual optics and we compare the obtained results. The total RMS error is presented when addressing capability of these functions in fitting with surfaces, and it is showed that the new fractional circle polynomials can be used as an alternative to the Zernike Polynomials to represent the complete anterior corneal surface.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-06T10:44:36Z
2019-01-01T00:00:00Z
2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25920
url http://hdl.handle.net/10773/25920
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1742-6588
10.1088/1742-6596/1194/1/012094
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137644050907136