On learning by exchanging advice

Detalhes bibliográficos
Autor(a) principal: Nunes, Luís
Data de Publicação: 2003
Outros Autores: Oliveira, Eugénio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/5327
Resumo: One of the main questions concerning learning in Multi-Agent Systems is: ”(How) can agents benefit from mutual interaction during the learning process?”. This paper describes the study of an interactive advice-exchange mechanism as a possible way to improve agents’ learning performance. The advice-exchange technique, discussed here, uses supervised learning (backpropagation), where reinforcement is not directly coming from the environment but is based on advice given by peers with better performance score (higher confidence), to enhance the performance of a heterogeneous group of Learning Agents (LAs). The LAs are facing similar problems, in an environment where only reinforcement information is available. Each LA applies a different, well known, learning technique: RandomWalk (hill-climbing), Simulated Annealing, Evolutionary Algorithms and Q-Learning. The problem used for evaluation is a simplified traffic-control simulation. In the following text the reader can find a description of the traffic simulation and Learning Agents (focused on the advice-exchange mechanism), a discussion of the first results obtained and suggested techniques to overcome the problems that have been observed. Initial results indicate that advice-exchange can improve learning speed, although ”bad advice” and/or blind reliance can disturb the learning performance. The use of supervised learning to incorporate advice given from non-expert peers using different learning algorithms, in problems where no supervision information is available, is, to the best of the authors’ knowledge, a new concept in the area of Multi-Agent Systems Learning.
id RCAP_458d5a1ee7352b3f237340ad3c687cba
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/5327
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On learning by exchanging adviceOne of the main questions concerning learning in Multi-Agent Systems is: ”(How) can agents benefit from mutual interaction during the learning process?”. This paper describes the study of an interactive advice-exchange mechanism as a possible way to improve agents’ learning performance. The advice-exchange technique, discussed here, uses supervised learning (backpropagation), where reinforcement is not directly coming from the environment but is based on advice given by peers with better performance score (higher confidence), to enhance the performance of a heterogeneous group of Learning Agents (LAs). The LAs are facing similar problems, in an environment where only reinforcement information is available. Each LA applies a different, well known, learning technique: RandomWalk (hill-climbing), Simulated Annealing, Evolutionary Algorithms and Q-Learning. The problem used for evaluation is a simplified traffic-control simulation. In the following text the reader can find a description of the traffic simulation and Learning Agents (focused on the advice-exchange mechanism), a discussion of the first results obtained and suggested techniques to overcome the problems that have been observed. Initial results indicate that advice-exchange can improve learning speed, although ”bad advice” and/or blind reliance can disturb the learning performance. The use of supervised learning to incorporate advice given from non-expert peers using different learning algorithms, in problems where no supervision information is available, is, to the best of the authors’ knowledge, a new concept in the area of Multi-Agent Systems Learning.2013-07-18T08:33:53Z2003-01-01T00:00:00Z2003info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/5327engNunes, LuísOliveira, Eugénioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:36:57Zoai:repositorio.iscte-iul.pt:10071/5327Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:16:50.340851Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On learning by exchanging advice
title On learning by exchanging advice
spellingShingle On learning by exchanging advice
Nunes, Luís
title_short On learning by exchanging advice
title_full On learning by exchanging advice
title_fullStr On learning by exchanging advice
title_full_unstemmed On learning by exchanging advice
title_sort On learning by exchanging advice
author Nunes, Luís
author_facet Nunes, Luís
Oliveira, Eugénio
author_role author
author2 Oliveira, Eugénio
author2_role author
dc.contributor.author.fl_str_mv Nunes, Luís
Oliveira, Eugénio
description One of the main questions concerning learning in Multi-Agent Systems is: ”(How) can agents benefit from mutual interaction during the learning process?”. This paper describes the study of an interactive advice-exchange mechanism as a possible way to improve agents’ learning performance. The advice-exchange technique, discussed here, uses supervised learning (backpropagation), where reinforcement is not directly coming from the environment but is based on advice given by peers with better performance score (higher confidence), to enhance the performance of a heterogeneous group of Learning Agents (LAs). The LAs are facing similar problems, in an environment where only reinforcement information is available. Each LA applies a different, well known, learning technique: RandomWalk (hill-climbing), Simulated Annealing, Evolutionary Algorithms and Q-Learning. The problem used for evaluation is a simplified traffic-control simulation. In the following text the reader can find a description of the traffic simulation and Learning Agents (focused on the advice-exchange mechanism), a discussion of the first results obtained and suggested techniques to overcome the problems that have been observed. Initial results indicate that advice-exchange can improve learning speed, although ”bad advice” and/or blind reliance can disturb the learning performance. The use of supervised learning to incorporate advice given from non-expert peers using different learning algorithms, in problems where no supervision information is available, is, to the best of the authors’ knowledge, a new concept in the area of Multi-Agent Systems Learning.
publishDate 2003
dc.date.none.fl_str_mv 2003-01-01T00:00:00Z
2003
2013-07-18T08:33:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/5327
url http://hdl.handle.net/10071/5327
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134727148404736