Animal monitoring based on IoT technologies (SHEEPIT)

Detalhes bibliográficos
Autor(a) principal: Tavares, André Filipe Capelo
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/24808
Resumo: The weed control is characterized by being time consuming and needs to be carried out with frequency. In general, human, mechanical and chemical ways are the main mechanisms used to remove invasive species. As an alternative, animals are often used in this process, reducing the ecological / environmental footprint, since it excludes the use of any type of herbicide or artificial fertilizer. However, the addition of animals in the viticulture field creates threats to the fruit and challenges to companies responsible for the plantations maintenance. This work has the objective of developing a solution based on IoT technologies that allows monitoring and collecting physical and behavioral attributes. Among others, by providing activity and animal behavior, the system should create alarm patterns, information about relative geographical positioning, detection of sexual receptivity (e.g. estrous) or early identification of diseases.
id RCAP_45d9e8a1fcd8f279c666e1c1aa45b028
oai_identifier_str oai:ria.ua.pt:10773/24808
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Animal monitoring based on IoT technologies (SHEEPIT)IoTSQLNoSQLBig DataMachine LearningThe weed control is characterized by being time consuming and needs to be carried out with frequency. In general, human, mechanical and chemical ways are the main mechanisms used to remove invasive species. As an alternative, animals are often used in this process, reducing the ecological / environmental footprint, since it excludes the use of any type of herbicide or artificial fertilizer. However, the addition of animals in the viticulture field creates threats to the fruit and challenges to companies responsible for the plantations maintenance. This work has the objective of developing a solution based on IoT technologies that allows monitoring and collecting physical and behavioral attributes. Among others, by providing activity and animal behavior, the system should create alarm patterns, information about relative geographical positioning, detection of sexual receptivity (e.g. estrous) or early identification of diseases.O processo de limpeza de terrenos vitícolas é caracterizado por ser moroso e dispendioso, necessitando de ser realizado com uma grande periodicidade. A utilização de animais neste processo é uma alternativa antiga, muito recorrente e utilizada em meios agrícolas rudimentares. Esta solução permite reduzir a pegada ecológica/ambiental, considerando que exclui qualquer tipo de herbicida, fertilizante artificial ou custo associado. Apesar das vantagens, a adição de animais no espaço vitícola cria ameaças aos frutos e acarreta desafios às empresas responsáveis pela manutenção das plantações, relacionados com o maneio animal. Face a isto, o presente projeto tem como objetivo o desenvolvimento de uma solução baseada em tecnologias IoT, permitindo monitorizar e aferir diversos aspetos físicos e comportamentais inerentes à gestão técnica de efetivos, com vista à rentabilização e otimização das explorações. Entre outros, a plataforma deverá disponibilizar informação de auxílio ao maneio e gestão de ruminantes, com base em padrões alarmísticos de infração, posicionamento geográfico relativo, deteção da recetividade sexual (CIO) ou identificação precoce de doenças.2018-12-06T10:42:49Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/24808TID:201946203engTavares, André Filipe Capeloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:48:29Zoai:ria.ua.pt:10773/24808Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:21.288224Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Animal monitoring based on IoT technologies (SHEEPIT)
title Animal monitoring based on IoT technologies (SHEEPIT)
spellingShingle Animal monitoring based on IoT technologies (SHEEPIT)
Tavares, André Filipe Capelo
IoT
SQL
NoSQL
Big Data
Machine Learning
title_short Animal monitoring based on IoT technologies (SHEEPIT)
title_full Animal monitoring based on IoT technologies (SHEEPIT)
title_fullStr Animal monitoring based on IoT technologies (SHEEPIT)
title_full_unstemmed Animal monitoring based on IoT technologies (SHEEPIT)
title_sort Animal monitoring based on IoT technologies (SHEEPIT)
author Tavares, André Filipe Capelo
author_facet Tavares, André Filipe Capelo
author_role author
dc.contributor.author.fl_str_mv Tavares, André Filipe Capelo
dc.subject.por.fl_str_mv IoT
SQL
NoSQL
Big Data
Machine Learning
topic IoT
SQL
NoSQL
Big Data
Machine Learning
description The weed control is characterized by being time consuming and needs to be carried out with frequency. In general, human, mechanical and chemical ways are the main mechanisms used to remove invasive species. As an alternative, animals are often used in this process, reducing the ecological / environmental footprint, since it excludes the use of any type of herbicide or artificial fertilizer. However, the addition of animals in the viticulture field creates threats to the fruit and challenges to companies responsible for the plantations maintenance. This work has the objective of developing a solution based on IoT technologies that allows monitoring and collecting physical and behavioral attributes. Among others, by providing activity and animal behavior, the system should create alarm patterns, information about relative geographical positioning, detection of sexual receptivity (e.g. estrous) or early identification of diseases.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01T00:00:00Z
2017
2018-12-06T10:42:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/24808
TID:201946203
url http://hdl.handle.net/10773/24808
identifier_str_mv TID:201946203
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137638048858112