Tackling Version Management and Reproducibility in MLOps

Detalhes bibliográficos
Autor(a) principal: Priscilla Dias Melin
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/152181
Resumo: The growing adoption of machine learning solutions requires advancements in applying best practices to maintain artificial intelligence systems in production. Machine Learning Operations (MLOps) incorporates DevOps principles into machine learning development, promoting automation, continuous delivery, monitoring, and training capabilities. Due to multiple factors, such as the experimental nature of the machine learning process or the need for model optimizations derived from changes in business needs, data scientists are expected to create multiple experiments to develop a model or predictor that satisfactorily addresses the main challenges of a given problem. Since the re-evaluation of models is a constant need, metadata is constantly produced due to multiple experiment runs. This metadata is known as ML artifacts or assets. The proper lineage between these artifacts enables environment recreation, facilitating model reproducibility. Linking information from experiments, models, datasets, configurations, and code changes requires proper organization, tracking, maintenance, and version control of these artifacts. This work will investigate the best practices, current issues, and open challenges related to artifact versioning and management and apply this knowledge to develop an ML workflow that supports ML engineering and operationalization, applying MLOps principles that facilitate model reproducibility. Scenarios covering data preparation, model generation, comparison between model versions, deployment, monitoring, debugging, and retraining demonstrated how the selected frameworks and tools could be integrated to achieve that goal.
id RCAP_46069993f5cc6e413471b65d407ed7b5
oai_identifier_str oai:repositorio-aberto.up.pt:10216/152181
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Tackling Version Management and Reproducibility in MLOpsOutras ciências da engenharia e tecnologiasOther engineering and technologiesThe growing adoption of machine learning solutions requires advancements in applying best practices to maintain artificial intelligence systems in production. Machine Learning Operations (MLOps) incorporates DevOps principles into machine learning development, promoting automation, continuous delivery, monitoring, and training capabilities. Due to multiple factors, such as the experimental nature of the machine learning process or the need for model optimizations derived from changes in business needs, data scientists are expected to create multiple experiments to develop a model or predictor that satisfactorily addresses the main challenges of a given problem. Since the re-evaluation of models is a constant need, metadata is constantly produced due to multiple experiment runs. This metadata is known as ML artifacts or assets. The proper lineage between these artifacts enables environment recreation, facilitating model reproducibility. Linking information from experiments, models, datasets, configurations, and code changes requires proper organization, tracking, maintenance, and version control of these artifacts. This work will investigate the best practices, current issues, and open challenges related to artifact versioning and management and apply this knowledge to develop an ML workflow that supports ML engineering and operationalization, applying MLOps principles that facilitate model reproducibility. Scenarios covering data preparation, model generation, comparison between model versions, deployment, monitoring, debugging, and retraining demonstrated how the selected frameworks and tools could be integrated to achieve that goal.2023-07-202023-07-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/152181TID:203420853engPriscilla Dias Melininfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-22T01:27:30Zoai:repositorio-aberto.up.pt:10216/152181Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:33:36.055508Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Tackling Version Management and Reproducibility in MLOps
title Tackling Version Management and Reproducibility in MLOps
spellingShingle Tackling Version Management and Reproducibility in MLOps
Priscilla Dias Melin
Outras ciências da engenharia e tecnologias
Other engineering and technologies
title_short Tackling Version Management and Reproducibility in MLOps
title_full Tackling Version Management and Reproducibility in MLOps
title_fullStr Tackling Version Management and Reproducibility in MLOps
title_full_unstemmed Tackling Version Management and Reproducibility in MLOps
title_sort Tackling Version Management and Reproducibility in MLOps
author Priscilla Dias Melin
author_facet Priscilla Dias Melin
author_role author
dc.contributor.author.fl_str_mv Priscilla Dias Melin
dc.subject.por.fl_str_mv Outras ciências da engenharia e tecnologias
Other engineering and technologies
topic Outras ciências da engenharia e tecnologias
Other engineering and technologies
description The growing adoption of machine learning solutions requires advancements in applying best practices to maintain artificial intelligence systems in production. Machine Learning Operations (MLOps) incorporates DevOps principles into machine learning development, promoting automation, continuous delivery, monitoring, and training capabilities. Due to multiple factors, such as the experimental nature of the machine learning process or the need for model optimizations derived from changes in business needs, data scientists are expected to create multiple experiments to develop a model or predictor that satisfactorily addresses the main challenges of a given problem. Since the re-evaluation of models is a constant need, metadata is constantly produced due to multiple experiment runs. This metadata is known as ML artifacts or assets. The proper lineage between these artifacts enables environment recreation, facilitating model reproducibility. Linking information from experiments, models, datasets, configurations, and code changes requires proper organization, tracking, maintenance, and version control of these artifacts. This work will investigate the best practices, current issues, and open challenges related to artifact versioning and management and apply this knowledge to develop an ML workflow that supports ML engineering and operationalization, applying MLOps principles that facilitate model reproducibility. Scenarios covering data preparation, model generation, comparison between model versions, deployment, monitoring, debugging, and retraining demonstrated how the selected frameworks and tools could be integrated to achieve that goal.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-20
2023-07-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/152181
TID:203420853
url https://hdl.handle.net/10216/152181
identifier_str_mv TID:203420853
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135647197298688