Botnet detection : a numerical and heuristic analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/27852 |
Resumo: | Dissertação de mestrado em Engenharia de Informática |
id |
RCAP_460a5ca187a20f4725aebe08dfd2969d |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/27852 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Botnet detection : a numerical and heuristic analysis681.324681.3-7Dissertação de mestrado em Engenharia de InformáticaInternet security has been targeted in innumerous ways throughout the ages and Internet cyber criminality has been changing its ways since the old days where attacks were greatly motivated by recognition and glory. A new era of cyber criminals are on the move. Real armies of robots (bots) swarm the internet perpetrating precise, objective and coordinated attacks on individuals and organizations. Many of these bots are now coordinated by real cybercrime organizations in an almost open-source driven development resulting in the fast proliferation of many bot variants with refined capabilities and increased detection complexity. One example of such open-source development could be found during the year 2011 in the Russian criminal underground. The release of the Zeus botnet framework source-code led to the development of, at least, a new and improved botnet framework: Ice IX. Concerning attack tools, the combination of many well-known techniques has been making botnets an untraceable, effective, dynamic and powerful mean to perpetrate all kinds of malicious activities such as Distributed Denial of Service (DDoS) attacks, espionage, email spam, malware spreading, data theft, click and identity frauds, among others. Economical and reputation damages are difficult to quantify but the scale is widening. It’s up to one’s own imagination to figure out how much was lost in April of 2007 when Estonia suffered a well-known distributed attack on its internet country-wide infrastructure. Among the techniques available to mitigate the botnet threat, detection plays an important role. Despite recent year’s evolution in botnet detection technology, a definitive solution is far from being found. New constantly appearing bot and worm developments in areas such as host infection, deployment, maintenance, control and dissimulation of bots are permanently changing the detection vectors thought and developed. In that way, research and implementation of anomaly-based botnet detection systems are fundamental to pinpoint and track all the continuously changing polymorphic botnets variants, which are impossible to identify by simple signature-based systems.Santos, Henrique Dinis dosUniversidade do MinhoMendonça, Luís Miguel Ferreira Costa2012-04-202012-04-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1822/27852enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:00:10Zoai:repositorium.sdum.uminho.pt:1822/27852Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:50:02.128320Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Botnet detection : a numerical and heuristic analysis |
title |
Botnet detection : a numerical and heuristic analysis |
spellingShingle |
Botnet detection : a numerical and heuristic analysis Mendonça, Luís Miguel Ferreira Costa 681.324 681.3-7 |
title_short |
Botnet detection : a numerical and heuristic analysis |
title_full |
Botnet detection : a numerical and heuristic analysis |
title_fullStr |
Botnet detection : a numerical and heuristic analysis |
title_full_unstemmed |
Botnet detection : a numerical and heuristic analysis |
title_sort |
Botnet detection : a numerical and heuristic analysis |
author |
Mendonça, Luís Miguel Ferreira Costa |
author_facet |
Mendonça, Luís Miguel Ferreira Costa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Henrique Dinis dos Universidade do Minho |
dc.contributor.author.fl_str_mv |
Mendonça, Luís Miguel Ferreira Costa |
dc.subject.por.fl_str_mv |
681.324 681.3-7 |
topic |
681.324 681.3-7 |
description |
Dissertação de mestrado em Engenharia de Informática |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04-20 2012-04-20T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/27852 |
url |
http://hdl.handle.net/1822/27852 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132267064328192 |