Deep Learning and IoT to Assist Multimorbidity Home Based Healthcare
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/22965 https://doi.org/10.4172/2157-7420.1000273 |
Resumo: | The authors present a proposal to develop intelligent assisted living environments for home based healthcare in the presence of multimorbidity chronic patients. These environments unite the chronicle patient clinical history sematic representation ICP (Individual Care Process) with the ability of monitoring the living conditions using IoT technologies and events recurring to a fully managed Semantic Web of Things (SWoT) and Machine Learning Algorithms in order to activate the LDC (Less Differentiated Caregiver) for a specific care need. With these capabilities at hand, home based healthcare providing becomes a viable possibility reducing the institutionalization needs. The resulting integrated healthcare framework will provide significant savings while improving the generality of health and satisfaction indicators. |
id |
RCAP_462c5ad054d0f1d3968d472ef781a972 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/22965 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Deep Learning and IoT to Assist Multimorbidity Home Based HealthcareComputer reasoningDeep learning,The authors present a proposal to develop intelligent assisted living environments for home based healthcare in the presence of multimorbidity chronic patients. These environments unite the chronicle patient clinical history sematic representation ICP (Individual Care Process) with the ability of monitoring the living conditions using IoT technologies and events recurring to a fully managed Semantic Web of Things (SWoT) and Machine Learning Algorithms in order to activate the LDC (Less Differentiated Caregiver) for a specific care need. With these capabilities at hand, home based healthcare providing becomes a viable possibility reducing the institutionalization needs. The resulting integrated healthcare framework will provide significant savings while improving the generality of health and satisfaction indicators.2018-03-13T14:42:21Z2018-03-132017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/22965http://hdl.handle.net/10174/22965https://doi.org/10.4172/2157-7420.1000273porhttps://www.omicsonline.org/open-access/deep-learning-and-iot-to-assist-multimorbidity-home-based-healthcare-2157-7420-1000273.pdfndndndndMendes, DavidLopes, ManuelParreira, PedroFonseca, Césarinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:14:28Zoai:dspace.uevora.pt:10174/22965Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:13:47.915454Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Deep Learning and IoT to Assist Multimorbidity Home Based Healthcare |
title |
Deep Learning and IoT to Assist Multimorbidity Home Based Healthcare |
spellingShingle |
Deep Learning and IoT to Assist Multimorbidity Home Based Healthcare Mendes, David Computer reasoning Deep learning, |
title_short |
Deep Learning and IoT to Assist Multimorbidity Home Based Healthcare |
title_full |
Deep Learning and IoT to Assist Multimorbidity Home Based Healthcare |
title_fullStr |
Deep Learning and IoT to Assist Multimorbidity Home Based Healthcare |
title_full_unstemmed |
Deep Learning and IoT to Assist Multimorbidity Home Based Healthcare |
title_sort |
Deep Learning and IoT to Assist Multimorbidity Home Based Healthcare |
author |
Mendes, David |
author_facet |
Mendes, David Lopes, Manuel Parreira, Pedro Fonseca, César |
author_role |
author |
author2 |
Lopes, Manuel Parreira, Pedro Fonseca, César |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Mendes, David Lopes, Manuel Parreira, Pedro Fonseca, César |
dc.subject.por.fl_str_mv |
Computer reasoning Deep learning, |
topic |
Computer reasoning Deep learning, |
description |
The authors present a proposal to develop intelligent assisted living environments for home based healthcare in the presence of multimorbidity chronic patients. These environments unite the chronicle patient clinical history sematic representation ICP (Individual Care Process) with the ability of monitoring the living conditions using IoT technologies and events recurring to a fully managed Semantic Web of Things (SWoT) and Machine Learning Algorithms in order to activate the LDC (Less Differentiated Caregiver) for a specific care need. With these capabilities at hand, home based healthcare providing becomes a viable possibility reducing the institutionalization needs. The resulting integrated healthcare framework will provide significant savings while improving the generality of health and satisfaction indicators. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01T00:00:00Z 2018-03-13T14:42:21Z 2018-03-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/22965 http://hdl.handle.net/10174/22965 https://doi.org/10.4172/2157-7420.1000273 |
url |
http://hdl.handle.net/10174/22965 https://doi.org/10.4172/2157-7420.1000273 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.omicsonline.org/open-access/deep-learning-and-iot-to-assist-multimorbidity-home-based-healthcare-2157-7420-1000273.pdf nd nd nd nd |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136619490443264 |