Calibration Agent for Ecological Simulations: A Metaheuristic Approach

Detalhes bibliográficos
Autor(a) principal: Pedro Valente
Data de Publicação: 2008
Outros Autores: António Pereira, Luis Paulo Reis
Tipo de documento: Livro
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10216/15882
Resumo: This paper presents an approach to the calibration of ecological models, using intelligent agents with learning skills and optimization techniques. Model calibration, in complex ecological simulations is tipically performed by comparing observed with predicted data and it reveals as a key phase in the modeling process. It is an interactive process, because after each simulation, the agent acquires more information about variables inter-relations and can predict the importance of parameters into variables results. Agents may be seen, in this context, as self-learning tools that simulate the learning process of the modeler about the simulated system. As in common Metaheuristics, this self-learning process, initially involves analyzing the problem and verifying its inter-relationships. The next stage is the learning process to improve this knowledge using optimization algorithms like Hill-Climbing, Simulated Annealing and Genetic Algorithms. The process ends, when convergence criteria are obtained and thus, a suitable calibration is achieved. Simple experiments have been performed to validate the approach
id RCAP_470405c1e9c89f732e7bc3068d3bfb42
oai_identifier_str oai:repositorio-aberto.up.pt:10216/15882
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Calibration Agent for Ecological Simulations: A Metaheuristic ApproachCiências tecnológicasTecnologia de agentesTecnologia do conhecimentoTecnologiaThis paper presents an approach to the calibration of ecological models, using intelligent agents with learning skills and optimization techniques. Model calibration, in complex ecological simulations is tipically performed by comparing observed with predicted data and it reveals as a key phase in the modeling process. It is an interactive process, because after each simulation, the agent acquires more information about variables inter-relations and can predict the importance of parameters into variables results. Agents may be seen, in this context, as self-learning tools that simulate the learning process of the modeler about the simulated system. As in common Metaheuristics, this self-learning process, initially involves analyzing the problem and verifying its inter-relationships. The next stage is the learning process to improve this knowledge using optimization algorithms like Hill-Climbing, Simulated Annealing and Genetic Algorithms. The process ends, when convergence criteria are obtained and thus, a suitable calibration is achieved. Simple experiments have been performed to validate the approach20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttp://hdl.handle.net/10216/15882porPedro ValenteAntónio PereiraLuis Paulo Reisinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:48:16Zoai:repositorio-aberto.up.pt:10216/15882Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:08:54.529099Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Calibration Agent for Ecological Simulations: A Metaheuristic Approach
title Calibration Agent for Ecological Simulations: A Metaheuristic Approach
spellingShingle Calibration Agent for Ecological Simulations: A Metaheuristic Approach
Pedro Valente
Ciências tecnológicas
Tecnologia de agentes
Tecnologia do conhecimento
Tecnologia
title_short Calibration Agent for Ecological Simulations: A Metaheuristic Approach
title_full Calibration Agent for Ecological Simulations: A Metaheuristic Approach
title_fullStr Calibration Agent for Ecological Simulations: A Metaheuristic Approach
title_full_unstemmed Calibration Agent for Ecological Simulations: A Metaheuristic Approach
title_sort Calibration Agent for Ecological Simulations: A Metaheuristic Approach
author Pedro Valente
author_facet Pedro Valente
António Pereira
Luis Paulo Reis
author_role author
author2 António Pereira
Luis Paulo Reis
author2_role author
author
dc.contributor.author.fl_str_mv Pedro Valente
António Pereira
Luis Paulo Reis
dc.subject.por.fl_str_mv Ciências tecnológicas
Tecnologia de agentes
Tecnologia do conhecimento
Tecnologia
topic Ciências tecnológicas
Tecnologia de agentes
Tecnologia do conhecimento
Tecnologia
description This paper presents an approach to the calibration of ecological models, using intelligent agents with learning skills and optimization techniques. Model calibration, in complex ecological simulations is tipically performed by comparing observed with predicted data and it reveals as a key phase in the modeling process. It is an interactive process, because after each simulation, the agent acquires more information about variables inter-relations and can predict the importance of parameters into variables results. Agents may be seen, in this context, as self-learning tools that simulate the learning process of the modeler about the simulated system. As in common Metaheuristics, this self-learning process, initially involves analyzing the problem and verifying its inter-relationships. The next stage is the learning process to improve this knowledge using optimization algorithms like Hill-Climbing, Simulated Annealing and Genetic Algorithms. The process ends, when convergence criteria are obtained and thus, a suitable calibration is achieved. Simple experiments have been performed to validate the approach
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10216/15882
url http://hdl.handle.net/10216/15882
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136014214627329