Calibration Agent for Ecological Simulations: A Metaheuristic Approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Livro |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10216/15882 |
Resumo: | This paper presents an approach to the calibration of ecological models, using intelligent agents with learning skills and optimization techniques. Model calibration, in complex ecological simulations is tipically performed by comparing observed with predicted data and it reveals as a key phase in the modeling process. It is an interactive process, because after each simulation, the agent acquires more information about variables inter-relations and can predict the importance of parameters into variables results. Agents may be seen, in this context, as self-learning tools that simulate the learning process of the modeler about the simulated system. As in common Metaheuristics, this self-learning process, initially involves analyzing the problem and verifying its inter-relationships. The next stage is the learning process to improve this knowledge using optimization algorithms like Hill-Climbing, Simulated Annealing and Genetic Algorithms. The process ends, when convergence criteria are obtained and thus, a suitable calibration is achieved. Simple experiments have been performed to validate the approach |
id |
RCAP_470405c1e9c89f732e7bc3068d3bfb42 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/15882 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Calibration Agent for Ecological Simulations: A Metaheuristic ApproachCiências tecnológicasTecnologia de agentesTecnologia do conhecimentoTecnologiaThis paper presents an approach to the calibration of ecological models, using intelligent agents with learning skills and optimization techniques. Model calibration, in complex ecological simulations is tipically performed by comparing observed with predicted data and it reveals as a key phase in the modeling process. It is an interactive process, because after each simulation, the agent acquires more information about variables inter-relations and can predict the importance of parameters into variables results. Agents may be seen, in this context, as self-learning tools that simulate the learning process of the modeler about the simulated system. As in common Metaheuristics, this self-learning process, initially involves analyzing the problem and verifying its inter-relationships. The next stage is the learning process to improve this knowledge using optimization algorithms like Hill-Climbing, Simulated Annealing and Genetic Algorithms. The process ends, when convergence criteria are obtained and thus, a suitable calibration is achieved. Simple experiments have been performed to validate the approach20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttp://hdl.handle.net/10216/15882porPedro ValenteAntónio PereiraLuis Paulo Reisinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:48:16Zoai:repositorio-aberto.up.pt:10216/15882Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:08:54.529099Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Calibration Agent for Ecological Simulations: A Metaheuristic Approach |
title |
Calibration Agent for Ecological Simulations: A Metaheuristic Approach |
spellingShingle |
Calibration Agent for Ecological Simulations: A Metaheuristic Approach Pedro Valente Ciências tecnológicas Tecnologia de agentes Tecnologia do conhecimento Tecnologia |
title_short |
Calibration Agent for Ecological Simulations: A Metaheuristic Approach |
title_full |
Calibration Agent for Ecological Simulations: A Metaheuristic Approach |
title_fullStr |
Calibration Agent for Ecological Simulations: A Metaheuristic Approach |
title_full_unstemmed |
Calibration Agent for Ecological Simulations: A Metaheuristic Approach |
title_sort |
Calibration Agent for Ecological Simulations: A Metaheuristic Approach |
author |
Pedro Valente |
author_facet |
Pedro Valente António Pereira Luis Paulo Reis |
author_role |
author |
author2 |
António Pereira Luis Paulo Reis |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pedro Valente António Pereira Luis Paulo Reis |
dc.subject.por.fl_str_mv |
Ciências tecnológicas Tecnologia de agentes Tecnologia do conhecimento Tecnologia |
topic |
Ciências tecnológicas Tecnologia de agentes Tecnologia do conhecimento Tecnologia |
description |
This paper presents an approach to the calibration of ecological models, using intelligent agents with learning skills and optimization techniques. Model calibration, in complex ecological simulations is tipically performed by comparing observed with predicted data and it reveals as a key phase in the modeling process. It is an interactive process, because after each simulation, the agent acquires more information about variables inter-relations and can predict the importance of parameters into variables results. Agents may be seen, in this context, as self-learning tools that simulate the learning process of the modeler about the simulated system. As in common Metaheuristics, this self-learning process, initially involves analyzing the problem and verifying its inter-relationships. The next stage is the learning process to improve this knowledge using optimization algorithms like Hill-Climbing, Simulated Annealing and Genetic Algorithms. The process ends, when convergence criteria are obtained and thus, a suitable calibration is achieved. Simple experiments have been performed to validate the approach |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10216/15882 |
url |
http://hdl.handle.net/10216/15882 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136014214627329 |