Knowledge discovery from surgical waiting lists

Detalhes bibliográficos
Autor(a) principal: Neto, Cristiana
Data de Publicação: 2017
Outros Autores: Peixoto, Hugo Daniel Abreu, Abelha, Vasco António Pinheiro Costa, Abelha, António, Machado, José Manuel
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/51665
Resumo: Methods for knowledge discovery in data bases (KDD) have been studied for more than a decade. New methods are required owing to the size and complexity of data collections in administration, business and science. They include procedures for data query and extraction, for data cleaning, data analysis, and methods of knowledge representation. The part of KDD dealing with the analysis of the data has been termed data mining. Data mining is the process of pattern discovery and extraction where huge amount of data is involved. Data mining has been used intensively and extensively by many organizations. In healthcare, data mining is becoming increasingly popular, if not increasingly essential. Data mining applications can greatly benefit all parties involved in the healthcare industry. In this work is presented an approach for the use of data mining in the context of waiting lists for surgery, namely for predicting the type of surgery (programmed or additional) for a record in the list.
id RCAP_47186d9843715fc577f01ecad9110078
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/51665
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Knowledge discovery from surgical waiting listsKnowledge Discovery in DatabasesData miningSurgery waiting listDecision Support SystemsClassificationScience & TechnologyMethods for knowledge discovery in data bases (KDD) have been studied for more than a decade. New methods are required owing to the size and complexity of data collections in administration, business and science. They include procedures for data query and extraction, for data cleaning, data analysis, and methods of knowledge representation. The part of KDD dealing with the analysis of the data has been termed data mining. Data mining is the process of pattern discovery and extraction where huge amount of data is involved. Data mining has been used intensively and extensively by many organizations. In healthcare, data mining is becoming increasingly popular, if not increasingly essential. Data mining applications can greatly benefit all parties involved in the healthcare industry. In this work is presented an approach for the use of data mining in the context of waiting lists for surgery, namely for predicting the type of surgery (programmed or additional) for a record in the list.This work has been supported by Compete: POCI-01-0145-FEDER-007043 and FCT within the Project Scope UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersionElsevier 1Universidade do MinhoNeto, CristianaPeixoto, Hugo Daniel AbreuAbelha, Vasco António Pinheiro CostaAbelha, AntónioMachado, José Manuel20172017-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/51665eng1877-050910.1016/j.procs.2017.11.141info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-13T02:07:27Zoai:repositorium.sdum.uminho.pt:1822/51665Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-13T02:07:27Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Knowledge discovery from surgical waiting lists
title Knowledge discovery from surgical waiting lists
spellingShingle Knowledge discovery from surgical waiting lists
Neto, Cristiana
Knowledge Discovery in Databases
Data mining
Surgery waiting list
Decision Support Systems
Classification
Science & Technology
title_short Knowledge discovery from surgical waiting lists
title_full Knowledge discovery from surgical waiting lists
title_fullStr Knowledge discovery from surgical waiting lists
title_full_unstemmed Knowledge discovery from surgical waiting lists
title_sort Knowledge discovery from surgical waiting lists
author Neto, Cristiana
author_facet Neto, Cristiana
Peixoto, Hugo Daniel Abreu
Abelha, Vasco António Pinheiro Costa
Abelha, António
Machado, José Manuel
author_role author
author2 Peixoto, Hugo Daniel Abreu
Abelha, Vasco António Pinheiro Costa
Abelha, António
Machado, José Manuel
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Neto, Cristiana
Peixoto, Hugo Daniel Abreu
Abelha, Vasco António Pinheiro Costa
Abelha, António
Machado, José Manuel
dc.subject.por.fl_str_mv Knowledge Discovery in Databases
Data mining
Surgery waiting list
Decision Support Systems
Classification
Science & Technology
topic Knowledge Discovery in Databases
Data mining
Surgery waiting list
Decision Support Systems
Classification
Science & Technology
description Methods for knowledge discovery in data bases (KDD) have been studied for more than a decade. New methods are required owing to the size and complexity of data collections in administration, business and science. They include procedures for data query and extraction, for data cleaning, data analysis, and methods of knowledge representation. The part of KDD dealing with the analysis of the data has been termed data mining. Data mining is the process of pattern discovery and extraction where huge amount of data is involved. Data mining has been used intensively and extensively by many organizations. In healthcare, data mining is becoming increasingly popular, if not increasingly essential. Data mining applications can greatly benefit all parties involved in the healthcare industry. In this work is presented an approach for the use of data mining in the context of waiting lists for surgery, namely for predicting the type of surgery (programmed or additional) for a record in the list.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/51665
url https://hdl.handle.net/1822/51665
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1877-0509
10.1016/j.procs.2017.11.141
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier 1
publisher.none.fl_str_mv Elsevier 1
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545100613386240