Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/108394 https://doi.org/10.1016/j.stemcr.2017.06.006 |
Resumo: | Image-based assays, such as alkaline phosphatase staining or immunocytochemistry for pluripotent markers, are common methods used in the stem cell field to assess pluripotency. Although an increased number of image-analysis approaches have been described, there is still a lack of software availability to automatically quantify pluripotency in large images after pluripotency staining. To address this need, we developed a robust and rapid image processing software, Pluri-IQ, which allows the automatic evaluation of pluripotency in large low-magnification images. Using mouse embryonic stem cells (mESC) as a model, we combined an automated segmentation algorithm with a supervised machine-learning platform to classify colonies as pluripotent, mixed, or differentiated. In addition, Pluri-IQ allows the automatic comparison between different culture conditions. This efficient user-friendly open-source software can be easily implemented in images derived from pluripotent cells or cells that express pluripotent markers (e.g., OCT4-GFP) and can be routinely used, decreasing image assessment bias. |
id |
RCAP_471af8cec2a250d6372d03627280b5b6 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/108394 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis SoftwareAlgorithmsAnimalsBiomarkersCell LineCells, CulturedEmbryonic Stem CellsGene ExpressionImage Processing, Computer-AssistedImmunohistochemistryMachine LearningMicePluripotent Stem CellsProtein TransportReproducibility of ResultsSensitivity and SpecificityUser-Computer InterfaceMolecular ImagingSoftwareImage-based assays, such as alkaline phosphatase staining or immunocytochemistry for pluripotent markers, are common methods used in the stem cell field to assess pluripotency. Although an increased number of image-analysis approaches have been described, there is still a lack of software availability to automatically quantify pluripotency in large images after pluripotency staining. To address this need, we developed a robust and rapid image processing software, Pluri-IQ, which allows the automatic evaluation of pluripotency in large low-magnification images. Using mouse embryonic stem cells (mESC) as a model, we combined an automated segmentation algorithm with a supervised machine-learning platform to classify colonies as pluripotent, mixed, or differentiated. In addition, Pluri-IQ allows the automatic comparison between different culture conditions. This efficient user-friendly open-source software can be easily implemented in images derived from pluripotent cells or cells that express pluripotent markers (e.g., OCT4-GFP) and can be routinely used, decreasing image assessment bias.Elsevier2017-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/108394http://hdl.handle.net/10316/108394https://doi.org/10.1016/j.stemcr.2017.06.006eng22136711Perestrelo, TâniaChen, WeitongCorreia, MarceloLe, ChristopherPereira, SandroRodrigues, Ana S.Sousa, Maria I.Ramalho-Santos, JoãoWirtz, Denisinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-28T11:35:49Zoai:estudogeral.uc.pt:10316/108394Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:24:41.664170Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software |
title |
Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software |
spellingShingle |
Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software Perestrelo, Tânia Algorithms Animals Biomarkers Cell Line Cells, Cultured Embryonic Stem Cells Gene Expression Image Processing, Computer-Assisted Immunohistochemistry Machine Learning Mice Pluripotent Stem Cells Protein Transport Reproducibility of Results Sensitivity and Specificity User-Computer Interface Molecular Imaging Software |
title_short |
Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software |
title_full |
Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software |
title_fullStr |
Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software |
title_full_unstemmed |
Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software |
title_sort |
Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software |
author |
Perestrelo, Tânia |
author_facet |
Perestrelo, Tânia Chen, Weitong Correia, Marcelo Le, Christopher Pereira, Sandro Rodrigues, Ana S. Sousa, Maria I. Ramalho-Santos, João Wirtz, Denis |
author_role |
author |
author2 |
Chen, Weitong Correia, Marcelo Le, Christopher Pereira, Sandro Rodrigues, Ana S. Sousa, Maria I. Ramalho-Santos, João Wirtz, Denis |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Perestrelo, Tânia Chen, Weitong Correia, Marcelo Le, Christopher Pereira, Sandro Rodrigues, Ana S. Sousa, Maria I. Ramalho-Santos, João Wirtz, Denis |
dc.subject.por.fl_str_mv |
Algorithms Animals Biomarkers Cell Line Cells, Cultured Embryonic Stem Cells Gene Expression Image Processing, Computer-Assisted Immunohistochemistry Machine Learning Mice Pluripotent Stem Cells Protein Transport Reproducibility of Results Sensitivity and Specificity User-Computer Interface Molecular Imaging Software |
topic |
Algorithms Animals Biomarkers Cell Line Cells, Cultured Embryonic Stem Cells Gene Expression Image Processing, Computer-Assisted Immunohistochemistry Machine Learning Mice Pluripotent Stem Cells Protein Transport Reproducibility of Results Sensitivity and Specificity User-Computer Interface Molecular Imaging Software |
description |
Image-based assays, such as alkaline phosphatase staining or immunocytochemistry for pluripotent markers, are common methods used in the stem cell field to assess pluripotency. Although an increased number of image-analysis approaches have been described, there is still a lack of software availability to automatically quantify pluripotency in large images after pluripotency staining. To address this need, we developed a robust and rapid image processing software, Pluri-IQ, which allows the automatic evaluation of pluripotency in large low-magnification images. Using mouse embryonic stem cells (mESC) as a model, we combined an automated segmentation algorithm with a supervised machine-learning platform to classify colonies as pluripotent, mixed, or differentiated. In addition, Pluri-IQ allows the automatic comparison between different culture conditions. This efficient user-friendly open-source software can be easily implemented in images derived from pluripotent cells or cells that express pluripotent markers (e.g., OCT4-GFP) and can be routinely used, decreasing image assessment bias. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/108394 http://hdl.handle.net/10316/108394 https://doi.org/10.1016/j.stemcr.2017.06.006 |
url |
http://hdl.handle.net/10316/108394 https://doi.org/10.1016/j.stemcr.2017.06.006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
22136711 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134130647072768 |