Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software

Detalhes bibliográficos
Autor(a) principal: Perestrelo, Tânia
Data de Publicação: 2017
Outros Autores: Chen, Weitong, Correia, Marcelo, Le, Christopher, Pereira, Sandro, Rodrigues, Ana S., Sousa, Maria I., Ramalho-Santos, João, Wirtz, Denis
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/108394
https://doi.org/10.1016/j.stemcr.2017.06.006
Resumo: Image-based assays, such as alkaline phosphatase staining or immunocytochemistry for pluripotent markers, are common methods used in the stem cell field to assess pluripotency. Although an increased number of image-analysis approaches have been described, there is still a lack of software availability to automatically quantify pluripotency in large images after pluripotency staining. To address this need, we developed a robust and rapid image processing software, Pluri-IQ, which allows the automatic evaluation of pluripotency in large low-magnification images. Using mouse embryonic stem cells (mESC) as a model, we combined an automated segmentation algorithm with a supervised machine-learning platform to classify colonies as pluripotent, mixed, or differentiated. In addition, Pluri-IQ allows the automatic comparison between different culture conditions. This efficient user-friendly open-source software can be easily implemented in images derived from pluripotent cells or cells that express pluripotent markers (e.g., OCT4-GFP) and can be routinely used, decreasing image assessment bias.
id RCAP_471af8cec2a250d6372d03627280b5b6
oai_identifier_str oai:estudogeral.uc.pt:10316/108394
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis SoftwareAlgorithmsAnimalsBiomarkersCell LineCells, CulturedEmbryonic Stem CellsGene ExpressionImage Processing, Computer-AssistedImmunohistochemistryMachine LearningMicePluripotent Stem CellsProtein TransportReproducibility of ResultsSensitivity and SpecificityUser-Computer InterfaceMolecular ImagingSoftwareImage-based assays, such as alkaline phosphatase staining or immunocytochemistry for pluripotent markers, are common methods used in the stem cell field to assess pluripotency. Although an increased number of image-analysis approaches have been described, there is still a lack of software availability to automatically quantify pluripotency in large images after pluripotency staining. To address this need, we developed a robust and rapid image processing software, Pluri-IQ, which allows the automatic evaluation of pluripotency in large low-magnification images. Using mouse embryonic stem cells (mESC) as a model, we combined an automated segmentation algorithm with a supervised machine-learning platform to classify colonies as pluripotent, mixed, or differentiated. In addition, Pluri-IQ allows the automatic comparison between different culture conditions. This efficient user-friendly open-source software can be easily implemented in images derived from pluripotent cells or cells that express pluripotent markers (e.g., OCT4-GFP) and can be routinely used, decreasing image assessment bias.Elsevier2017-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/108394http://hdl.handle.net/10316/108394https://doi.org/10.1016/j.stemcr.2017.06.006eng22136711Perestrelo, TâniaChen, WeitongCorreia, MarceloLe, ChristopherPereira, SandroRodrigues, Ana S.Sousa, Maria I.Ramalho-Santos, JoãoWirtz, Denisinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-28T11:35:49Zoai:estudogeral.uc.pt:10316/108394Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:24:41.664170Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software
title Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software
spellingShingle Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software
Perestrelo, Tânia
Algorithms
Animals
Biomarkers
Cell Line
Cells, Cultured
Embryonic Stem Cells
Gene Expression
Image Processing, Computer-Assisted
Immunohistochemistry
Machine Learning
Mice
Pluripotent Stem Cells
Protein Transport
Reproducibility of Results
Sensitivity and Specificity
User-Computer Interface
Molecular Imaging
Software
title_short Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software
title_full Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software
title_fullStr Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software
title_full_unstemmed Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software
title_sort Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software
author Perestrelo, Tânia
author_facet Perestrelo, Tânia
Chen, Weitong
Correia, Marcelo
Le, Christopher
Pereira, Sandro
Rodrigues, Ana S.
Sousa, Maria I.
Ramalho-Santos, João
Wirtz, Denis
author_role author
author2 Chen, Weitong
Correia, Marcelo
Le, Christopher
Pereira, Sandro
Rodrigues, Ana S.
Sousa, Maria I.
Ramalho-Santos, João
Wirtz, Denis
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Perestrelo, Tânia
Chen, Weitong
Correia, Marcelo
Le, Christopher
Pereira, Sandro
Rodrigues, Ana S.
Sousa, Maria I.
Ramalho-Santos, João
Wirtz, Denis
dc.subject.por.fl_str_mv Algorithms
Animals
Biomarkers
Cell Line
Cells, Cultured
Embryonic Stem Cells
Gene Expression
Image Processing, Computer-Assisted
Immunohistochemistry
Machine Learning
Mice
Pluripotent Stem Cells
Protein Transport
Reproducibility of Results
Sensitivity and Specificity
User-Computer Interface
Molecular Imaging
Software
topic Algorithms
Animals
Biomarkers
Cell Line
Cells, Cultured
Embryonic Stem Cells
Gene Expression
Image Processing, Computer-Assisted
Immunohistochemistry
Machine Learning
Mice
Pluripotent Stem Cells
Protein Transport
Reproducibility of Results
Sensitivity and Specificity
User-Computer Interface
Molecular Imaging
Software
description Image-based assays, such as alkaline phosphatase staining or immunocytochemistry for pluripotent markers, are common methods used in the stem cell field to assess pluripotency. Although an increased number of image-analysis approaches have been described, there is still a lack of software availability to automatically quantify pluripotency in large images after pluripotency staining. To address this need, we developed a robust and rapid image processing software, Pluri-IQ, which allows the automatic evaluation of pluripotency in large low-magnification images. Using mouse embryonic stem cells (mESC) as a model, we combined an automated segmentation algorithm with a supervised machine-learning platform to classify colonies as pluripotent, mixed, or differentiated. In addition, Pluri-IQ allows the automatic comparison between different culture conditions. This efficient user-friendly open-source software can be easily implemented in images derived from pluripotent cells or cells that express pluripotent markers (e.g., OCT4-GFP) and can be routinely used, decreasing image assessment bias.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/108394
http://hdl.handle.net/10316/108394
https://doi.org/10.1016/j.stemcr.2017.06.006
url http://hdl.handle.net/10316/108394
https://doi.org/10.1016/j.stemcr.2017.06.006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 22136711
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134130647072768