Predicting motor oil condition using artificial neural networks and principal component analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/101256 https://doi.org/10.17531/ein.2020.3.6 |
Resumo: | The safety and performance of engines such as Diesel, gas or even wind turbines depends on the quality and condition of the lubricant oil. Assessment of engine oil condition is done based on more than twenty variables that have, individually, variations that depend on the engines’ behaviour, type and other factors. The present paper describes a model to automatically classify the oil condition, using Artificial Neural Networks and Principal Component Analysis. The study was done using data obtained from two passenger bus companies in a country of Southern Europe. The results show the importance of each variable monitored for determining the ideal time to change oil. In many cases, it may be possible to enlarge intervals between maintenance interventions, while in other cases the oil passed the ideal change point. |
id |
RCAP_471cffef36b978174802eca5010b61e2 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/101256 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting motor oil condition using artificial neural networks and principal component analysiscondition monitoringoil analysismultivariate analysispredictive maintenancemonitorowanie stanuanaliza olejuanaliza wielowymiarowakonserwacja predykcyjnaThe safety and performance of engines such as Diesel, gas or even wind turbines depends on the quality and condition of the lubricant oil. Assessment of engine oil condition is done based on more than twenty variables that have, individually, variations that depend on the engines’ behaviour, type and other factors. The present paper describes a model to automatically classify the oil condition, using Artificial Neural Networks and Principal Component Analysis. The study was done using data obtained from two passenger bus companies in a country of Southern Europe. The results show the importance of each variable monitored for determining the ideal time to change oil. In many cases, it may be possible to enlarge intervals between maintenance interventions, while in other cases the oil passed the ideal change point.Bezpieczeństwo i wydajność silników takich, jak silniki Diesla czy gazowe, a nawet turbiny wiatrowe, zależą od jakości i stanu oleju smarowego. Stanu oleju silnikowego ocenia się na podstawie ponad dwudziestu zmiennych, z których każda ulega wahaniom w zależności od typu i zachowania silnika oraz innych czynników. W niniejszym artykule opisano model, który pozwala na automatyczną klasyfikację stanu oleju, z wykorzystaniem sztucznych sieci neuronowych i analizy składowych głównych. Badania przeprowadzono na podstawie danych uzyskanych od dwóch przewoźników pasażerskich działających na terenie jednego z krajów położonych na południu Europy. Wyniki pokazują, że każda z monitorowanych zmiennych ma znaczenie dla określenia idealnego czasu na wymianę oleju. Podczas gdy w wielu przypadkach w badanych przedsiębiorstwach możliwe było zwiększenie odstępów czasowych między działaniami konserwacyjnymi, w innych, idealny moment wymiany oleju został przekroczony.2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/101256http://hdl.handle.net/10316/101256https://doi.org/10.17531/ein.2020.3.6eng15072711Rodrigues, JoãoCosta, InêsFarinha, J. TorresMendes, MateusMargalho, Luísinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-08-18T20:43:39Zoai:estudogeral.uc.pt:10316/101256Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:18:29.382566Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting motor oil condition using artificial neural networks and principal component analysis |
title |
Predicting motor oil condition using artificial neural networks and principal component analysis |
spellingShingle |
Predicting motor oil condition using artificial neural networks and principal component analysis Rodrigues, João condition monitoring oil analysis multivariate analysis predictive maintenance monitorowanie stanu analiza oleju analiza wielowymiarowa konserwacja predykcyjna |
title_short |
Predicting motor oil condition using artificial neural networks and principal component analysis |
title_full |
Predicting motor oil condition using artificial neural networks and principal component analysis |
title_fullStr |
Predicting motor oil condition using artificial neural networks and principal component analysis |
title_full_unstemmed |
Predicting motor oil condition using artificial neural networks and principal component analysis |
title_sort |
Predicting motor oil condition using artificial neural networks and principal component analysis |
author |
Rodrigues, João |
author_facet |
Rodrigues, João Costa, Inês Farinha, J. Torres Mendes, Mateus Margalho, Luís |
author_role |
author |
author2 |
Costa, Inês Farinha, J. Torres Mendes, Mateus Margalho, Luís |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Rodrigues, João Costa, Inês Farinha, J. Torres Mendes, Mateus Margalho, Luís |
dc.subject.por.fl_str_mv |
condition monitoring oil analysis multivariate analysis predictive maintenance monitorowanie stanu analiza oleju analiza wielowymiarowa konserwacja predykcyjna |
topic |
condition monitoring oil analysis multivariate analysis predictive maintenance monitorowanie stanu analiza oleju analiza wielowymiarowa konserwacja predykcyjna |
description |
The safety and performance of engines such as Diesel, gas or even wind turbines depends on the quality and condition of the lubricant oil. Assessment of engine oil condition is done based on more than twenty variables that have, individually, variations that depend on the engines’ behaviour, type and other factors. The present paper describes a model to automatically classify the oil condition, using Artificial Neural Networks and Principal Component Analysis. The study was done using data obtained from two passenger bus companies in a country of Southern Europe. The results show the importance of each variable monitored for determining the ideal time to change oil. In many cases, it may be possible to enlarge intervals between maintenance interventions, while in other cases the oil passed the ideal change point. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/101256 http://hdl.handle.net/10316/101256 https://doi.org/10.17531/ein.2020.3.6 |
url |
http://hdl.handle.net/10316/101256 https://doi.org/10.17531/ein.2020.3.6 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
15072711 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134079679987712 |