Masonry Compressive Strength Prediction Using Artificial Neural Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.8/4181 |
Resumo: | The masonry is not only included among the oldest building materials, but it is also the most widely used material due to its simple construction and low cost compared to the other modern building materials. Nevertheless, there is not yet a robust quantitative method, available in the literature, which can reliably predict its strength, based on the geometrical and mechanical characteristics of its components. This limitation is due to the highly nonlinear relation between the compressive strength of masonry and the geometrical and mechanical properties of the components of the masonry. In this paper, the application of artificial neural networks for predicting the compressive strength of masonry has been investigated. Specifically, back-propagation neural network models have been used for predicting the compressive strength of masonry prism based on experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of masonry walls in a reliable and robust manner. |
id |
RCAP_472b14c7b7a3215ddf5963c15586daa4 |
---|---|
oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/4181 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Masonry Compressive Strength Prediction Using Artificial Neural NetworksArtificial Neural Networks (ANNs)Building materialsCompressive strengthMasonryMasonry unitMortarSoft-computing techniquesThe masonry is not only included among the oldest building materials, but it is also the most widely used material due to its simple construction and low cost compared to the other modern building materials. Nevertheless, there is not yet a robust quantitative method, available in the literature, which can reliably predict its strength, based on the geometrical and mechanical characteristics of its components. This limitation is due to the highly nonlinear relation between the compressive strength of masonry and the geometrical and mechanical properties of the components of the masonry. In this paper, the application of artificial neural networks for predicting the compressive strength of masonry has been investigated. Specifically, back-propagation neural network models have been used for predicting the compressive strength of masonry prism based on experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of masonry walls in a reliable and robust manner.Springer NatureIC-OnlineAsteris, Panagiotis G.Argyropoulos, IoannisCavaleri, LiborioRodrigues, HugoVarum, HumbertoThomas, JobLourenço, Paulo B.2019-10-07T16:04:28Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/4181engAsteris, Panagiotis & Argyropoulos, Ioannis & Cavaleri, L. & Rodrigues, Hugo & Varum, H. & Thomas, Job & Lourenco, Paulo (2018). Masonry Compressive Strength Prediction using Artificial Neural Networks.1865-0929https://doi.org/10.1007/978-3-030-12960-6_14metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:48:41Zoai:iconline.ipleiria.pt:10400.8/4181Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:48:05.324189Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Masonry Compressive Strength Prediction Using Artificial Neural Networks |
title |
Masonry Compressive Strength Prediction Using Artificial Neural Networks |
spellingShingle |
Masonry Compressive Strength Prediction Using Artificial Neural Networks Asteris, Panagiotis G. Artificial Neural Networks (ANNs) Building materials Compressive strength Masonry Masonry unit Mortar Soft-computing techniques |
title_short |
Masonry Compressive Strength Prediction Using Artificial Neural Networks |
title_full |
Masonry Compressive Strength Prediction Using Artificial Neural Networks |
title_fullStr |
Masonry Compressive Strength Prediction Using Artificial Neural Networks |
title_full_unstemmed |
Masonry Compressive Strength Prediction Using Artificial Neural Networks |
title_sort |
Masonry Compressive Strength Prediction Using Artificial Neural Networks |
author |
Asteris, Panagiotis G. |
author_facet |
Asteris, Panagiotis G. Argyropoulos, Ioannis Cavaleri, Liborio Rodrigues, Hugo Varum, Humberto Thomas, Job Lourenço, Paulo B. |
author_role |
author |
author2 |
Argyropoulos, Ioannis Cavaleri, Liborio Rodrigues, Hugo Varum, Humberto Thomas, Job Lourenço, Paulo B. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
IC-Online |
dc.contributor.author.fl_str_mv |
Asteris, Panagiotis G. Argyropoulos, Ioannis Cavaleri, Liborio Rodrigues, Hugo Varum, Humberto Thomas, Job Lourenço, Paulo B. |
dc.subject.por.fl_str_mv |
Artificial Neural Networks (ANNs) Building materials Compressive strength Masonry Masonry unit Mortar Soft-computing techniques |
topic |
Artificial Neural Networks (ANNs) Building materials Compressive strength Masonry Masonry unit Mortar Soft-computing techniques |
description |
The masonry is not only included among the oldest building materials, but it is also the most widely used material due to its simple construction and low cost compared to the other modern building materials. Nevertheless, there is not yet a robust quantitative method, available in the literature, which can reliably predict its strength, based on the geometrical and mechanical characteristics of its components. This limitation is due to the highly nonlinear relation between the compressive strength of masonry and the geometrical and mechanical properties of the components of the masonry. In this paper, the application of artificial neural networks for predicting the compressive strength of masonry has been investigated. Specifically, back-propagation neural network models have been used for predicting the compressive strength of masonry prism based on experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of masonry walls in a reliable and robust manner. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-07T16:04:28Z 2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/4181 |
url |
http://hdl.handle.net/10400.8/4181 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Asteris, Panagiotis & Argyropoulos, Ioannis & Cavaleri, L. & Rodrigues, Hugo & Varum, H. & Thomas, Job & Lourenco, Paulo (2018). Masonry Compressive Strength Prediction using Artificial Neural Networks. 1865-0929 https://doi.org/10.1007/978-3-030-12960-6_14 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136974248869888 |