Masonry Compressive Strength Prediction Using Artificial Neural Networks

Detalhes bibliográficos
Autor(a) principal: Asteris, Panagiotis G.
Data de Publicação: 2019
Outros Autores: Argyropoulos, Ioannis, Cavaleri, Liborio, Rodrigues, Hugo, Varum, Humberto, Thomas, Job, Lourenço, Paulo B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.8/4181
Resumo: The masonry is not only included among the oldest building materials, but it is also the most widely used material due to its simple construction and low cost compared to the other modern building materials. Nevertheless, there is not yet a robust quantitative method, available in the literature, which can reliably predict its strength, based on the geometrical and mechanical characteristics of its components. This limitation is due to the highly nonlinear relation between the compressive strength of masonry and the geometrical and mechanical properties of the components of the masonry. In this paper, the application of artificial neural networks for predicting the compressive strength of masonry has been investigated. Specifically, back-propagation neural network models have been used for predicting the compressive strength of masonry prism based on experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of masonry walls in a reliable and robust manner.
id RCAP_472b14c7b7a3215ddf5963c15586daa4
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/4181
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Masonry Compressive Strength Prediction Using Artificial Neural NetworksArtificial Neural Networks (ANNs)Building materialsCompressive strengthMasonryMasonry unitMortarSoft-computing techniquesThe masonry is not only included among the oldest building materials, but it is also the most widely used material due to its simple construction and low cost compared to the other modern building materials. Nevertheless, there is not yet a robust quantitative method, available in the literature, which can reliably predict its strength, based on the geometrical and mechanical characteristics of its components. This limitation is due to the highly nonlinear relation between the compressive strength of masonry and the geometrical and mechanical properties of the components of the masonry. In this paper, the application of artificial neural networks for predicting the compressive strength of masonry has been investigated. Specifically, back-propagation neural network models have been used for predicting the compressive strength of masonry prism based on experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of masonry walls in a reliable and robust manner.Springer NatureIC-OnlineAsteris, Panagiotis G.Argyropoulos, IoannisCavaleri, LiborioRodrigues, HugoVarum, HumbertoThomas, JobLourenço, Paulo B.2019-10-07T16:04:28Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/4181engAsteris, Panagiotis & Argyropoulos, Ioannis & Cavaleri, L. & Rodrigues, Hugo & Varum, H. & Thomas, Job & Lourenco, Paulo (2018). Masonry Compressive Strength Prediction using Artificial Neural Networks.1865-0929https://doi.org/10.1007/978-3-030-12960-6_14metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:48:41Zoai:iconline.ipleiria.pt:10400.8/4181Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:48:05.324189Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Masonry Compressive Strength Prediction Using Artificial Neural Networks
title Masonry Compressive Strength Prediction Using Artificial Neural Networks
spellingShingle Masonry Compressive Strength Prediction Using Artificial Neural Networks
Asteris, Panagiotis G.
Artificial Neural Networks (ANNs)
Building materials
Compressive strength
Masonry
Masonry unit
Mortar
Soft-computing techniques
title_short Masonry Compressive Strength Prediction Using Artificial Neural Networks
title_full Masonry Compressive Strength Prediction Using Artificial Neural Networks
title_fullStr Masonry Compressive Strength Prediction Using Artificial Neural Networks
title_full_unstemmed Masonry Compressive Strength Prediction Using Artificial Neural Networks
title_sort Masonry Compressive Strength Prediction Using Artificial Neural Networks
author Asteris, Panagiotis G.
author_facet Asteris, Panagiotis G.
Argyropoulos, Ioannis
Cavaleri, Liborio
Rodrigues, Hugo
Varum, Humberto
Thomas, Job
Lourenço, Paulo B.
author_role author
author2 Argyropoulos, Ioannis
Cavaleri, Liborio
Rodrigues, Hugo
Varum, Humberto
Thomas, Job
Lourenço, Paulo B.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv IC-Online
dc.contributor.author.fl_str_mv Asteris, Panagiotis G.
Argyropoulos, Ioannis
Cavaleri, Liborio
Rodrigues, Hugo
Varum, Humberto
Thomas, Job
Lourenço, Paulo B.
dc.subject.por.fl_str_mv Artificial Neural Networks (ANNs)
Building materials
Compressive strength
Masonry
Masonry unit
Mortar
Soft-computing techniques
topic Artificial Neural Networks (ANNs)
Building materials
Compressive strength
Masonry
Masonry unit
Mortar
Soft-computing techniques
description The masonry is not only included among the oldest building materials, but it is also the most widely used material due to its simple construction and low cost compared to the other modern building materials. Nevertheless, there is not yet a robust quantitative method, available in the literature, which can reliably predict its strength, based on the geometrical and mechanical characteristics of its components. This limitation is due to the highly nonlinear relation between the compressive strength of masonry and the geometrical and mechanical properties of the components of the masonry. In this paper, the application of artificial neural networks for predicting the compressive strength of masonry has been investigated. Specifically, back-propagation neural network models have been used for predicting the compressive strength of masonry prism based on experimental data available in the literature. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of masonry walls in a reliable and robust manner.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-07T16:04:28Z
2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/4181
url http://hdl.handle.net/10400.8/4181
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Asteris, Panagiotis & Argyropoulos, Ioannis & Cavaleri, L. & Rodrigues, Hugo & Varum, H. & Thomas, Job & Lourenco, Paulo (2018). Masonry Compressive Strength Prediction using Artificial Neural Networks.
1865-0929
https://doi.org/10.1007/978-3-030-12960-6_14
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136974248869888