Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/32802 |
Resumo: | An increasing amount of industrial chemicals are being released into wastewater collection systems and indigenous microbial communities in treatment plants are not always effective for their removal. In this work, extracellular polymeric substances (EPS) recovered from aerobic granular sludge (AGS) were used as a natural carrier to immobilize a specific microbial strain, Rhodococcus sp. FP1, able to degrade 2-fluorophenol (2-FP). The produced EPS granules exhibited a 2-FP degrading ability of 100% in batch assays, retaining their original activity after up to 2-months storage. Furthermore, EPS granules were added to an AGS reactor intermittently fed with saline wastewater containing 2-FP. Degradation of 2-FP and stoichiometric fluorine release occurred 8 and 35 days after bioaugmentation, respectively. Chemical oxygen demand removal was not significantly impaired by 2-FP or salinity loads. Nutrients removal was impaired by 2-FP load, but after bioaugmentation, the phosphate and ammonium removal efficiency improved from 14 to 46% and from 25 to 42%, respectively. After 2-FP feeding ceased, at low/moderate salinity (0.6–6.0 g L−1 NaCl), ammonium removal was completely restored, and phosphate removal efficiency increased. After bioaugmentation, 11 bacteria isolated from AGS were able to degrade 2-FP, indicating that horizontal gene transfer could have occurred in the reactor. The improvement of bioreactor performance after bioaugmentation with EPS immobilized bacteria and the maintenance of cell viability through storage are the main advantages of the use of this natural microbial carrier for bioaugmentation, which can benefit wastewater treatment processes. |
id |
RCAP_47523b53aee27f47faa12fea807029a8 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/32802 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor2-FluorophenolAerobic granular sludgeBioaugmentationEPS granulesAn increasing amount of industrial chemicals are being released into wastewater collection systems and indigenous microbial communities in treatment plants are not always effective for their removal. In this work, extracellular polymeric substances (EPS) recovered from aerobic granular sludge (AGS) were used as a natural carrier to immobilize a specific microbial strain, Rhodococcus sp. FP1, able to degrade 2-fluorophenol (2-FP). The produced EPS granules exhibited a 2-FP degrading ability of 100% in batch assays, retaining their original activity after up to 2-months storage. Furthermore, EPS granules were added to an AGS reactor intermittently fed with saline wastewater containing 2-FP. Degradation of 2-FP and stoichiometric fluorine release occurred 8 and 35 days after bioaugmentation, respectively. Chemical oxygen demand removal was not significantly impaired by 2-FP or salinity loads. Nutrients removal was impaired by 2-FP load, but after bioaugmentation, the phosphate and ammonium removal efficiency improved from 14 to 46% and from 25 to 42%, respectively. After 2-FP feeding ceased, at low/moderate salinity (0.6–6.0 g L−1 NaCl), ammonium removal was completely restored, and phosphate removal efficiency increased. After bioaugmentation, 11 bacteria isolated from AGS were able to degrade 2-FP, indicating that horizontal gene transfer could have occurred in the reactor. The improvement of bioreactor performance after bioaugmentation with EPS immobilized bacteria and the maintenance of cell viability through storage are the main advantages of the use of this natural microbial carrier for bioaugmentation, which can benefit wastewater treatment processes.Veritati - Repositório Institucional da Universidade Católica PortuguesaOliveira, Ana S.Amorim, Catarina L.Zlopasa, JureLoosdrecht, Mark vanCastro, Paula M. L.2023-03-02T01:30:29Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/32802eng0045-653510.1016/j.chemosphere.2021.1300378510175623333667767000647817200065info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-06T12:31:41Zoai:repositorio.ucp.pt:10400.14/32802Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-06T12:31:41Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor |
title |
Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor |
spellingShingle |
Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor Oliveira, Ana S. 2-Fluorophenol Aerobic granular sludge Bioaugmentation EPS granules |
title_short |
Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor |
title_full |
Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor |
title_fullStr |
Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor |
title_full_unstemmed |
Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor |
title_sort |
Recovered granular sludge extracellular polymeric substances as carrier for bioaugmentation of granular sludge reactor |
author |
Oliveira, Ana S. |
author_facet |
Oliveira, Ana S. Amorim, Catarina L. Zlopasa, Jure Loosdrecht, Mark van Castro, Paula M. L. |
author_role |
author |
author2 |
Amorim, Catarina L. Zlopasa, Jure Loosdrecht, Mark van Castro, Paula M. L. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Oliveira, Ana S. Amorim, Catarina L. Zlopasa, Jure Loosdrecht, Mark van Castro, Paula M. L. |
dc.subject.por.fl_str_mv |
2-Fluorophenol Aerobic granular sludge Bioaugmentation EPS granules |
topic |
2-Fluorophenol Aerobic granular sludge Bioaugmentation EPS granules |
description |
An increasing amount of industrial chemicals are being released into wastewater collection systems and indigenous microbial communities in treatment plants are not always effective for their removal. In this work, extracellular polymeric substances (EPS) recovered from aerobic granular sludge (AGS) were used as a natural carrier to immobilize a specific microbial strain, Rhodococcus sp. FP1, able to degrade 2-fluorophenol (2-FP). The produced EPS granules exhibited a 2-FP degrading ability of 100% in batch assays, retaining their original activity after up to 2-months storage. Furthermore, EPS granules were added to an AGS reactor intermittently fed with saline wastewater containing 2-FP. Degradation of 2-FP and stoichiometric fluorine release occurred 8 and 35 days after bioaugmentation, respectively. Chemical oxygen demand removal was not significantly impaired by 2-FP or salinity loads. Nutrients removal was impaired by 2-FP load, but after bioaugmentation, the phosphate and ammonium removal efficiency improved from 14 to 46% and from 25 to 42%, respectively. After 2-FP feeding ceased, at low/moderate salinity (0.6–6.0 g L−1 NaCl), ammonium removal was completely restored, and phosphate removal efficiency increased. After bioaugmentation, 11 bacteria isolated from AGS were able to degrade 2-FP, indicating that horizontal gene transfer could have occurred in the reactor. The improvement of bioreactor performance after bioaugmentation with EPS immobilized bacteria and the maintenance of cell viability through storage are the main advantages of the use of this natural microbial carrier for bioaugmentation, which can benefit wastewater treatment processes. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2023-03-02T01:30:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/32802 |
url |
http://hdl.handle.net/10400.14/32802 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0045-6535 10.1016/j.chemosphere.2021.130037 85101756233 33667767 000647817200065 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546997008171008 |