Two-stage Stochastic Model using Benders' Decomposition for Large-scale Energy Resources Management in Smart grids

Detalhes bibliográficos
Autor(a) principal: Soares, Joao
Data de Publicação: 2017
Outros Autores: Canizes, Bruno, Fotouhi Gazvhini, M. Ali, Vale, Zita, Venayagamoorthy, G. K.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/10223
Resumo: The ever-increasing penetration level of renewable energy and electric vehicles may threaten power grid operation. Dealing with uncertainty in smart grids is critical in order to mitigate possible issues. This research work proposes a two-stage stochastic model for large-scale energy resources scheduling for aggregators. The proposed model is designed for aggregators managing a smart grid. The idea is to address the challenge brought by the variability of demand, renewable energy, electric vehicles, and market price variations while pursuing cost minimization. Benders’ decomposition approach is implemented to improve the tractability of the original model and its’ computational burden. A realistic case study is presented using a real distribution network in Portugal with high penetration of renewable energy and electric vehicles. The results show the effectiveness and efficiency of the proposed approach when compared with a deterministic formulation and suggest that demand response and storage systems can mitigate the uncertainty.
id RCAP_484212f0236db8e4b80ad66065356d4d
oai_identifier_str oai:recipp.ipp.pt:10400.22/10223
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Two-stage Stochastic Model using Benders' Decomposition for Large-scale Energy Resources Management in Smart gridsBenders decompositionEnergy managementLarge-scale systemsOptimization methodsPower generation schedulingStochastic systemsUncertaintyThe ever-increasing penetration level of renewable energy and electric vehicles may threaten power grid operation. Dealing with uncertainty in smart grids is critical in order to mitigate possible issues. This research work proposes a two-stage stochastic model for large-scale energy resources scheduling for aggregators. The proposed model is designed for aggregators managing a smart grid. The idea is to address the challenge brought by the variability of demand, renewable energy, electric vehicles, and market price variations while pursuing cost minimization. Benders’ decomposition approach is implemented to improve the tractability of the original model and its’ computational burden. A realistic case study is presented using a real distribution network in Portugal with high penetration of renewable energy and electric vehicles. The results show the effectiveness and efficiency of the proposed approach when compared with a deterministic formulation and suggest that demand response and storage systems can mitigate the uncertainty.Repositório Científico do Instituto Politécnico do PortoSoares, JoaoCanizes, BrunoFotouhi Gazvhini, M. AliVale, ZitaVenayagamoorthy, G. K.2017-08-29T14:58:28Z2017-07-052017-07-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/10223eng10.1109/TIA.2017.2723339info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:51:46Zoai:recipp.ipp.pt:10400.22/10223Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:30:40.997642Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Two-stage Stochastic Model using Benders' Decomposition for Large-scale Energy Resources Management in Smart grids
title Two-stage Stochastic Model using Benders' Decomposition for Large-scale Energy Resources Management in Smart grids
spellingShingle Two-stage Stochastic Model using Benders' Decomposition for Large-scale Energy Resources Management in Smart grids
Soares, Joao
Benders decomposition
Energy management
Large-scale systems
Optimization methods
Power generation scheduling
Stochastic systems
Uncertainty
title_short Two-stage Stochastic Model using Benders' Decomposition for Large-scale Energy Resources Management in Smart grids
title_full Two-stage Stochastic Model using Benders' Decomposition for Large-scale Energy Resources Management in Smart grids
title_fullStr Two-stage Stochastic Model using Benders' Decomposition for Large-scale Energy Resources Management in Smart grids
title_full_unstemmed Two-stage Stochastic Model using Benders' Decomposition for Large-scale Energy Resources Management in Smart grids
title_sort Two-stage Stochastic Model using Benders' Decomposition for Large-scale Energy Resources Management in Smart grids
author Soares, Joao
author_facet Soares, Joao
Canizes, Bruno
Fotouhi Gazvhini, M. Ali
Vale, Zita
Venayagamoorthy, G. K.
author_role author
author2 Canizes, Bruno
Fotouhi Gazvhini, M. Ali
Vale, Zita
Venayagamoorthy, G. K.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Soares, Joao
Canizes, Bruno
Fotouhi Gazvhini, M. Ali
Vale, Zita
Venayagamoorthy, G. K.
dc.subject.por.fl_str_mv Benders decomposition
Energy management
Large-scale systems
Optimization methods
Power generation scheduling
Stochastic systems
Uncertainty
topic Benders decomposition
Energy management
Large-scale systems
Optimization methods
Power generation scheduling
Stochastic systems
Uncertainty
description The ever-increasing penetration level of renewable energy and electric vehicles may threaten power grid operation. Dealing with uncertainty in smart grids is critical in order to mitigate possible issues. This research work proposes a two-stage stochastic model for large-scale energy resources scheduling for aggregators. The proposed model is designed for aggregators managing a smart grid. The idea is to address the challenge brought by the variability of demand, renewable energy, electric vehicles, and market price variations while pursuing cost minimization. Benders’ decomposition approach is implemented to improve the tractability of the original model and its’ computational burden. A realistic case study is presented using a real distribution network in Portugal with high penetration of renewable energy and electric vehicles. The results show the effectiveness and efficiency of the proposed approach when compared with a deterministic formulation and suggest that demand response and storage systems can mitigate the uncertainty.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-29T14:58:28Z
2017-07-05
2017-07-05T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/10223
url http://hdl.handle.net/10400.22/10223
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/TIA.2017.2723339
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131402544873472