Classificação de dados biológicos : características e classificadores

Detalhes bibliográficos
Autor(a) principal: Correia, Daniel João Bastos
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.26/17234
Resumo: Reconhecendo a importância que o estudo das proteínas desempenha para a compreensão de inúmeros sistemas biológicos, este trabalho tem por objetivo analisar e explorar a efetividade da utilização de técnicas de data mining para classificação de proteínas, aplicadas ao caso de estudo da deteção de peptidases. A metodologia apresentada e avaliada é baseada em técnicas de text mining aplicadas à estrutura primária das proteínas, conjugadas com algoritmos de classificação supervisionada. São apresentados resultados para os algoritmos baseados em máquinas de vetor de suporte, nomeadamente C-SVC, One-Class e LASVM (incremental). Para o caso de estudo da deteção de peptidases, o algoritmo que apresentou melhores resultados foi o C-SVC. A utilização do algoritmo One-Class apresentou uma diminuição da capacidade de deteção de peptidases relativamente ao C-SVC. Apesar disso, o algoritmo One-Class pode ser uma solução de compromisso quando só são conhecidos exemplos positivos. Através da utilização do algoritmo incremental LASVM, conseguiram-se resultados muito próximos do C-SVC. Contudo, não foi possível superá-los, mas os resultados obtidos apresentam ganhos significativos ao nível do tempo de treino e da complexidade dos modelos gerados, tornando-se um algoritmo bastante válido para aplicar a problemas que disponham de uma grande quantidade de exemplos de treino. Além da análise e avaliação dos algoritmos, foi também elaborada uma plataforma web, “Bioink Search”, que permite aplicar as metodologias descritas para a deteção de peptidases.
id RCAP_4888db3e8451589d6fffb3b8b662e4fa
oai_identifier_str oai:comum.rcaap.pt:10400.26/17234
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Classificação de dados biológicos : características e classificadoresProteínasDeteção de PeptidasesText miningSupport Vector MachinesOne-ClassLASVMWeb PlatformReconhecendo a importância que o estudo das proteínas desempenha para a compreensão de inúmeros sistemas biológicos, este trabalho tem por objetivo analisar e explorar a efetividade da utilização de técnicas de data mining para classificação de proteínas, aplicadas ao caso de estudo da deteção de peptidases. A metodologia apresentada e avaliada é baseada em técnicas de text mining aplicadas à estrutura primária das proteínas, conjugadas com algoritmos de classificação supervisionada. São apresentados resultados para os algoritmos baseados em máquinas de vetor de suporte, nomeadamente C-SVC, One-Class e LASVM (incremental). Para o caso de estudo da deteção de peptidases, o algoritmo que apresentou melhores resultados foi o C-SVC. A utilização do algoritmo One-Class apresentou uma diminuição da capacidade de deteção de peptidases relativamente ao C-SVC. Apesar disso, o algoritmo One-Class pode ser uma solução de compromisso quando só são conhecidos exemplos positivos. Através da utilização do algoritmo incremental LASVM, conseguiram-se resultados muito próximos do C-SVC. Contudo, não foi possível superá-los, mas os resultados obtidos apresentam ganhos significativos ao nível do tempo de treino e da complexidade dos modelos gerados, tornando-se um algoritmo bastante válido para aplicar a problemas que disponham de uma grande quantidade de exemplos de treino. Além da análise e avaliação dos algoritmos, foi também elaborada uma plataforma web, “Bioink Search”, que permite aplicar as metodologias descritas para a deteção de peptidases.Pereira, Carlos Manuel Jorge da SilvaRepositório ComumCorreia, Daniel João Bastos2017-01-03T14:49:53Z2012-01-01T00:00:00Z2012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.26/17234 201509385porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-05T15:39:44Zoai:comum.rcaap.pt:10400.26/17234Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:15:37.552174Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Classificação de dados biológicos : características e classificadores
title Classificação de dados biológicos : características e classificadores
spellingShingle Classificação de dados biológicos : características e classificadores
Correia, Daniel João Bastos
Proteínas
Deteção de Peptidases
Text mining
Support Vector Machines
One-Class
LASVM
Web Platform
title_short Classificação de dados biológicos : características e classificadores
title_full Classificação de dados biológicos : características e classificadores
title_fullStr Classificação de dados biológicos : características e classificadores
title_full_unstemmed Classificação de dados biológicos : características e classificadores
title_sort Classificação de dados biológicos : características e classificadores
author Correia, Daniel João Bastos
author_facet Correia, Daniel João Bastos
author_role author
dc.contributor.none.fl_str_mv Pereira, Carlos Manuel Jorge da Silva
Repositório Comum
dc.contributor.author.fl_str_mv Correia, Daniel João Bastos
dc.subject.por.fl_str_mv Proteínas
Deteção de Peptidases
Text mining
Support Vector Machines
One-Class
LASVM
Web Platform
topic Proteínas
Deteção de Peptidases
Text mining
Support Vector Machines
One-Class
LASVM
Web Platform
description Reconhecendo a importância que o estudo das proteínas desempenha para a compreensão de inúmeros sistemas biológicos, este trabalho tem por objetivo analisar e explorar a efetividade da utilização de técnicas de data mining para classificação de proteínas, aplicadas ao caso de estudo da deteção de peptidases. A metodologia apresentada e avaliada é baseada em técnicas de text mining aplicadas à estrutura primária das proteínas, conjugadas com algoritmos de classificação supervisionada. São apresentados resultados para os algoritmos baseados em máquinas de vetor de suporte, nomeadamente C-SVC, One-Class e LASVM (incremental). Para o caso de estudo da deteção de peptidases, o algoritmo que apresentou melhores resultados foi o C-SVC. A utilização do algoritmo One-Class apresentou uma diminuição da capacidade de deteção de peptidases relativamente ao C-SVC. Apesar disso, o algoritmo One-Class pode ser uma solução de compromisso quando só são conhecidos exemplos positivos. Através da utilização do algoritmo incremental LASVM, conseguiram-se resultados muito próximos do C-SVC. Contudo, não foi possível superá-los, mas os resultados obtidos apresentam ganhos significativos ao nível do tempo de treino e da complexidade dos modelos gerados, tornando-se um algoritmo bastante válido para aplicar a problemas que disponham de uma grande quantidade de exemplos de treino. Além da análise e avaliação dos algoritmos, foi também elaborada uma plataforma web, “Bioink Search”, que permite aplicar as metodologias descritas para a deteção de peptidases.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01T00:00:00Z
2012-01-01T00:00:00Z
2017-01-03T14:49:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/17234
 201509385
url http://hdl.handle.net/10400.26/17234
identifier_str_mv  201509385
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130021019779072