A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer Dataset
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.57805/revstat.v22i1.436 |
Resumo: | In this article, we studied a generalization of the log-normal distribution called Zografos-Balakrishnan log-normal distribution and investigate its various important properties and functions including moments, quantile function, various reliability measures, Rényi entropy, and some inequality measures. The estimation of unknown parameters is discussed by the methods of maximum likelihood, and the Bayesian technique and their simulation studies are also carried out. The applicability of the distribution is illustrated utilizing a real dataset. A likelihood ratio test is utilized for testing the efficiency of the third parameter. The effectiveness of this model for the dataset is also established using the parametric bootstrap approach. |
id |
RCAP_48cd817c066138459a853e79c85ada85 |
---|---|
oai_identifier_str |
oai:revstat:article/436 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer DatasetZografos-Balakrishnan-G familyreliability measuresmaximum likelihood estimationBayesian estimationbootstrap confidence intervallikelihood ratio testIn this article, we studied a generalization of the log-normal distribution called Zografos-Balakrishnan log-normal distribution and investigate its various important properties and functions including moments, quantile function, various reliability measures, Rényi entropy, and some inequality measures. The estimation of unknown parameters is discussed by the methods of maximum likelihood, and the Bayesian technique and their simulation studies are also carried out. The applicability of the distribution is illustrated utilizing a real dataset. A likelihood ratio test is utilized for testing the efficiency of the third parameter. The effectiveness of this model for the dataset is also established using the parametric bootstrap approach.Statistics Portugal2024-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.57805/revstat.v22i1.436https://doi.org/10.57805/revstat.v22i1.436REVSTAT-Statistical Journal; Vol. 22 No. 1 (2024): REVSTAT-Statistical Journal; 1–24REVSTAT; Vol. 22 N.º 1 (2024): REVSTAT-Statistical Journal; 1–242183-03711645-6726reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/436https://revstat.ine.pt/index.php/REVSTAT/article/view/436/681Shibu, D. S.Nitin, S. L.Irshad, M. R.info:eu-repo/semantics/openAccess2024-02-24T07:12:39Zoai:revstat:article/436Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:11:18.278800Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer Dataset |
title |
A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer Dataset |
spellingShingle |
A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer Dataset Shibu, D. S. Zografos-Balakrishnan-G family reliability measures maximum likelihood estimation Bayesian estimation bootstrap confidence interval likelihood ratio test |
title_short |
A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer Dataset |
title_full |
A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer Dataset |
title_fullStr |
A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer Dataset |
title_full_unstemmed |
A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer Dataset |
title_sort |
A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer Dataset |
author |
Shibu, D. S. |
author_facet |
Shibu, D. S. Nitin, S. L. Irshad, M. R. |
author_role |
author |
author2 |
Nitin, S. L. Irshad, M. R. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Shibu, D. S. Nitin, S. L. Irshad, M. R. |
dc.subject.por.fl_str_mv |
Zografos-Balakrishnan-G family reliability measures maximum likelihood estimation Bayesian estimation bootstrap confidence interval likelihood ratio test |
topic |
Zografos-Balakrishnan-G family reliability measures maximum likelihood estimation Bayesian estimation bootstrap confidence interval likelihood ratio test |
description |
In this article, we studied a generalization of the log-normal distribution called Zografos-Balakrishnan log-normal distribution and investigate its various important properties and functions including moments, quantile function, various reliability measures, Rényi entropy, and some inequality measures. The estimation of unknown parameters is discussed by the methods of maximum likelihood, and the Bayesian technique and their simulation studies are also carried out. The applicability of the distribution is illustrated utilizing a real dataset. A likelihood ratio test is utilized for testing the efficiency of the third parameter. The effectiveness of this model for the dataset is also established using the parametric bootstrap approach. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.57805/revstat.v22i1.436 https://doi.org/10.57805/revstat.v22i1.436 |
url |
https://doi.org/10.57805/revstat.v22i1.436 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revstat.ine.pt/index.php/REVSTAT/article/view/436 https://revstat.ine.pt/index.php/REVSTAT/article/view/436/681 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Statistics Portugal |
publisher.none.fl_str_mv |
Statistics Portugal |
dc.source.none.fl_str_mv |
REVSTAT-Statistical Journal; Vol. 22 No. 1 (2024): REVSTAT-Statistical Journal; 1–24 REVSTAT; Vol. 22 N.º 1 (2024): REVSTAT-Statistical Journal; 1–24 2183-0371 1645-6726 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137763345301504 |