Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/10086 |
Resumo: | This paper presents a Particle Swarm Optimization (PSO) methodology to solve the problem of energy resource management with high penetration of Distributed Generation (DG) and Electric Vehicles (EVs), based in multi-objective optimization. The high penetration of unpredictable DG, results in the increase of the operation cost, due to the additional constraints on the system, and has a direct influence on the reducing of carbon dioxide (CO2) emissions. The proposed methodology consists in a multi-objective function, in which is intended to maximize the profit, corresponding to the difference between the income and operating costs, and minimize CO2 emissions. In this case study it was considered a real Spanish electric network, from the city of Zaragoza, applied to the productions and consumption values expected in 2030. This network is constituted by 1300 EVs and 70% DG penetration of its total installed capacity. |
id |
RCAP_4905fe6ede4d2feebe2f898c5e2c4940 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/10086 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy SchedulingEnergy Resources ManagementCO2 EmissionsParticle Swarm OptimizationMulti-ObjectiveThis paper presents a Particle Swarm Optimization (PSO) methodology to solve the problem of energy resource management with high penetration of Distributed Generation (DG) and Electric Vehicles (EVs), based in multi-objective optimization. The high penetration of unpredictable DG, results in the increase of the operation cost, due to the additional constraints on the system, and has a direct influence on the reducing of carbon dioxide (CO2) emissions. The proposed methodology consists in a multi-objective function, in which is intended to maximize the profit, corresponding to the difference between the income and operating costs, and minimize CO2 emissions. In this case study it was considered a real Spanish electric network, from the city of Zaragoza, applied to the productions and consumption values expected in 2030. This network is constituted by 1300 EVs and 70% DG penetration of its total installed capacity.Institute of Electrical and Electronics EngineersRepositório Científico do Instituto Politécnico do PortoBorges, NunoSoares, JoãoVale, ZitaCanizes, Bruno20162117-01-01T00:00:00Z2016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/10086eng10.1109/TDC.2016.7520023metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:51:38Zoai:recipp.ipp.pt:10400.22/10086Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:30:35.680600Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling |
title |
Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling |
spellingShingle |
Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling Borges, Nuno Energy Resources Management CO2 Emissions Particle Swarm Optimization Multi-Objective |
title_short |
Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling |
title_full |
Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling |
title_fullStr |
Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling |
title_full_unstemmed |
Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling |
title_sort |
Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling |
author |
Borges, Nuno |
author_facet |
Borges, Nuno Soares, João Vale, Zita Canizes, Bruno |
author_role |
author |
author2 |
Soares, João Vale, Zita Canizes, Bruno |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Borges, Nuno Soares, João Vale, Zita Canizes, Bruno |
dc.subject.por.fl_str_mv |
Energy Resources Management CO2 Emissions Particle Swarm Optimization Multi-Objective |
topic |
Energy Resources Management CO2 Emissions Particle Swarm Optimization Multi-Objective |
description |
This paper presents a Particle Swarm Optimization (PSO) methodology to solve the problem of energy resource management with high penetration of Distributed Generation (DG) and Electric Vehicles (EVs), based in multi-objective optimization. The high penetration of unpredictable DG, results in the increase of the operation cost, due to the additional constraints on the system, and has a direct influence on the reducing of carbon dioxide (CO2) emissions. The proposed methodology consists in a multi-objective function, in which is intended to maximize the profit, corresponding to the difference between the income and operating costs, and minimize CO2 emissions. In this case study it was considered a real Spanish electric network, from the city of Zaragoza, applied to the productions and consumption values expected in 2030. This network is constituted by 1300 EVs and 70% DG penetration of its total installed capacity. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2117-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/10086 |
url |
http://hdl.handle.net/10400.22/10086 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/TDC.2016.7520023 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131401710206976 |