Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling

Detalhes bibliográficos
Autor(a) principal: Borges, Nuno
Data de Publicação: 2016
Outros Autores: Soares, João, Vale, Zita, Canizes, Bruno
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/10086
Resumo: This paper presents a Particle Swarm Optimization (PSO) methodology to solve the problem of energy resource management with high penetration of Distributed Generation (DG) and Electric Vehicles (EVs), based in multi-objective optimization. The high penetration of unpredictable DG, results in the increase of the operation cost, due to the additional constraints on the system, and has a direct influence on the reducing of carbon dioxide (CO2) emissions. The proposed methodology consists in a multi-objective function, in which is intended to maximize the profit, corresponding to the difference between the income and operating costs, and minimize CO2 emissions. In this case study it was considered a real Spanish electric network, from the city of Zaragoza, applied to the productions and consumption values expected in 2030. This network is constituted by 1300 EVs and 70% DG penetration of its total installed capacity.
id RCAP_4905fe6ede4d2feebe2f898c5e2c4940
oai_identifier_str oai:recipp.ipp.pt:10400.22/10086
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy SchedulingEnergy Resources ManagementCO2 EmissionsParticle Swarm OptimizationMulti-ObjectiveThis paper presents a Particle Swarm Optimization (PSO) methodology to solve the problem of energy resource management with high penetration of Distributed Generation (DG) and Electric Vehicles (EVs), based in multi-objective optimization. The high penetration of unpredictable DG, results in the increase of the operation cost, due to the additional constraints on the system, and has a direct influence on the reducing of carbon dioxide (CO2) emissions. The proposed methodology consists in a multi-objective function, in which is intended to maximize the profit, corresponding to the difference between the income and operating costs, and minimize CO2 emissions. In this case study it was considered a real Spanish electric network, from the city of Zaragoza, applied to the productions and consumption values expected in 2030. This network is constituted by 1300 EVs and 70% DG penetration of its total installed capacity.Institute of Electrical and Electronics EngineersRepositório Científico do Instituto Politécnico do PortoBorges, NunoSoares, JoãoVale, ZitaCanizes, Bruno20162117-01-01T00:00:00Z2016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/10086eng10.1109/TDC.2016.7520023metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:51:38Zoai:recipp.ipp.pt:10400.22/10086Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:30:35.680600Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling
title Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling
spellingShingle Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling
Borges, Nuno
Energy Resources Management
CO2 Emissions
Particle Swarm Optimization
Multi-Objective
title_short Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling
title_full Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling
title_fullStr Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling
title_full_unstemmed Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling
title_sort Weighted sum approach using Parallel Particle Swarm Optimization to Solve Multi-objective Energy Scheduling
author Borges, Nuno
author_facet Borges, Nuno
Soares, João
Vale, Zita
Canizes, Bruno
author_role author
author2 Soares, João
Vale, Zita
Canizes, Bruno
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Borges, Nuno
Soares, João
Vale, Zita
Canizes, Bruno
dc.subject.por.fl_str_mv Energy Resources Management
CO2 Emissions
Particle Swarm Optimization
Multi-Objective
topic Energy Resources Management
CO2 Emissions
Particle Swarm Optimization
Multi-Objective
description This paper presents a Particle Swarm Optimization (PSO) methodology to solve the problem of energy resource management with high penetration of Distributed Generation (DG) and Electric Vehicles (EVs), based in multi-objective optimization. The high penetration of unpredictable DG, results in the increase of the operation cost, due to the additional constraints on the system, and has a direct influence on the reducing of carbon dioxide (CO2) emissions. The proposed methodology consists in a multi-objective function, in which is intended to maximize the profit, corresponding to the difference between the income and operating costs, and minimize CO2 emissions. In this case study it was considered a real Spanish electric network, from the city of Zaragoza, applied to the productions and consumption values expected in 2030. This network is constituted by 1300 EVs and 70% DG penetration of its total installed capacity.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
2117-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/10086
url http://hdl.handle.net/10400.22/10086
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/TDC.2016.7520023
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131401710206976