A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/108860 https://doi.org/10.1016/j.proeng.2016.06.073 |
Resumo: | In this paper a new data-driven approach is proposed for uniaxial compressive strength (qu) prediction of laboratory soil-cement mixtures. The proposed model is able to predict qu over time under different conditions, e.g. different cement contents or soil types, and can be applied at the pre-design stage. This means that the model can be applied previously to the preparation of any laboratory formulation. The designer only needs to collect information about the main geotechnical soil properties (grain size, organic matter content, among other) and select the binder composition to prepare the mixture. Based on a sensitivity analysis, the key model variables were identified and its effect quantified. Thus, it was caught by the model the most relevant variables in qu prediction over time and very high prediction capacity with an overall regression coefficient higher than 0.95. |
id |
RCAP_491ea4100a92363906e64e2e5be8c983 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/108860 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Data-driven Approach for qu Prediction of Laboratory Soil-cement MixturesSoil-cement mixturesLaboratory formulationsUniaxial compressive strengthData miningNeuronal networksSensitivity analysisIn this paper a new data-driven approach is proposed for uniaxial compressive strength (qu) prediction of laboratory soil-cement mixtures. The proposed model is able to predict qu over time under different conditions, e.g. different cement contents or soil types, and can be applied at the pre-design stage. This means that the model can be applied previously to the preparation of any laboratory formulation. The designer only needs to collect information about the main geotechnical soil properties (grain size, organic matter content, among other) and select the binder composition to prepare the mixture. Based on a sensitivity analysis, the key model variables were identified and its effect quantified. Thus, it was caught by the model the most relevant variables in qu prediction over time and very high prediction capacity with an overall regression coefficient higher than 0.95.Elsevier2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/108860http://hdl.handle.net/10316/108860https://doi.org/10.1016/j.proeng.2016.06.073eng18777058Tinoco, JoaquimCorreia, António AlbertoVenda, Paulo daCorreia, António GomesLemos, Luísinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-21T10:04:36Zoai:estudogeral.uc.pt:10316/108860Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:25:06.129445Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures |
title |
A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures |
spellingShingle |
A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures Tinoco, Joaquim Soil-cement mixtures Laboratory formulations Uniaxial compressive strength Data mining Neuronal networks Sensitivity analysis |
title_short |
A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures |
title_full |
A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures |
title_fullStr |
A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures |
title_full_unstemmed |
A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures |
title_sort |
A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures |
author |
Tinoco, Joaquim |
author_facet |
Tinoco, Joaquim Correia, António Alberto Venda, Paulo da Correia, António Gomes Lemos, Luís |
author_role |
author |
author2 |
Correia, António Alberto Venda, Paulo da Correia, António Gomes Lemos, Luís |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Tinoco, Joaquim Correia, António Alberto Venda, Paulo da Correia, António Gomes Lemos, Luís |
dc.subject.por.fl_str_mv |
Soil-cement mixtures Laboratory formulations Uniaxial compressive strength Data mining Neuronal networks Sensitivity analysis |
topic |
Soil-cement mixtures Laboratory formulations Uniaxial compressive strength Data mining Neuronal networks Sensitivity analysis |
description |
In this paper a new data-driven approach is proposed for uniaxial compressive strength (qu) prediction of laboratory soil-cement mixtures. The proposed model is able to predict qu over time under different conditions, e.g. different cement contents or soil types, and can be applied at the pre-design stage. This means that the model can be applied previously to the preparation of any laboratory formulation. The designer only needs to collect information about the main geotechnical soil properties (grain size, organic matter content, among other) and select the binder composition to prepare the mixture. Based on a sensitivity analysis, the key model variables were identified and its effect quantified. Thus, it was caught by the model the most relevant variables in qu prediction over time and very high prediction capacity with an overall regression coefficient higher than 0.95. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/108860 http://hdl.handle.net/10316/108860 https://doi.org/10.1016/j.proeng.2016.06.073 |
url |
http://hdl.handle.net/10316/108860 https://doi.org/10.1016/j.proeng.2016.06.073 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
18777058 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134134367420416 |