A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures

Detalhes bibliográficos
Autor(a) principal: Tinoco, Joaquim
Data de Publicação: 2016
Outros Autores: Correia, António Alberto, Venda, Paulo da, Correia, António Gomes, Lemos, Luís
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/108860
https://doi.org/10.1016/j.proeng.2016.06.073
Resumo: In this paper a new data-driven approach is proposed for uniaxial compressive strength (qu) prediction of laboratory soil-cement mixtures. The proposed model is able to predict qu over time under different conditions, e.g. different cement contents or soil types, and can be applied at the pre-design stage. This means that the model can be applied previously to the preparation of any laboratory formulation. The designer only needs to collect information about the main geotechnical soil properties (grain size, organic matter content, among other) and select the binder composition to prepare the mixture. Based on a sensitivity analysis, the key model variables were identified and its effect quantified. Thus, it was caught by the model the most relevant variables in qu prediction over time and very high prediction capacity with an overall regression coefficient higher than 0.95.
id RCAP_491ea4100a92363906e64e2e5be8c983
oai_identifier_str oai:estudogeral.uc.pt:10316/108860
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A Data-driven Approach for qu Prediction of Laboratory Soil-cement MixturesSoil-cement mixturesLaboratory formulationsUniaxial compressive strengthData miningNeuronal networksSensitivity analysisIn this paper a new data-driven approach is proposed for uniaxial compressive strength (qu) prediction of laboratory soil-cement mixtures. The proposed model is able to predict qu over time under different conditions, e.g. different cement contents or soil types, and can be applied at the pre-design stage. This means that the model can be applied previously to the preparation of any laboratory formulation. The designer only needs to collect information about the main geotechnical soil properties (grain size, organic matter content, among other) and select the binder composition to prepare the mixture. Based on a sensitivity analysis, the key model variables were identified and its effect quantified. Thus, it was caught by the model the most relevant variables in qu prediction over time and very high prediction capacity with an overall regression coefficient higher than 0.95.Elsevier2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/108860http://hdl.handle.net/10316/108860https://doi.org/10.1016/j.proeng.2016.06.073eng18777058Tinoco, JoaquimCorreia, António AlbertoVenda, Paulo daCorreia, António GomesLemos, Luísinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-21T10:04:36Zoai:estudogeral.uc.pt:10316/108860Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:25:06.129445Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures
title A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures
spellingShingle A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures
Tinoco, Joaquim
Soil-cement mixtures
Laboratory formulations
Uniaxial compressive strength
Data mining
Neuronal networks
Sensitivity analysis
title_short A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures
title_full A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures
title_fullStr A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures
title_full_unstemmed A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures
title_sort A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures
author Tinoco, Joaquim
author_facet Tinoco, Joaquim
Correia, António Alberto
Venda, Paulo da
Correia, António Gomes
Lemos, Luís
author_role author
author2 Correia, António Alberto
Venda, Paulo da
Correia, António Gomes
Lemos, Luís
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Tinoco, Joaquim
Correia, António Alberto
Venda, Paulo da
Correia, António Gomes
Lemos, Luís
dc.subject.por.fl_str_mv Soil-cement mixtures
Laboratory formulations
Uniaxial compressive strength
Data mining
Neuronal networks
Sensitivity analysis
topic Soil-cement mixtures
Laboratory formulations
Uniaxial compressive strength
Data mining
Neuronal networks
Sensitivity analysis
description In this paper a new data-driven approach is proposed for uniaxial compressive strength (qu) prediction of laboratory soil-cement mixtures. The proposed model is able to predict qu over time under different conditions, e.g. different cement contents or soil types, and can be applied at the pre-design stage. This means that the model can be applied previously to the preparation of any laboratory formulation. The designer only needs to collect information about the main geotechnical soil properties (grain size, organic matter content, among other) and select the binder composition to prepare the mixture. Based on a sensitivity analysis, the key model variables were identified and its effect quantified. Thus, it was caught by the model the most relevant variables in qu prediction over time and very high prediction capacity with an overall regression coefficient higher than 0.95.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/108860
http://hdl.handle.net/10316/108860
https://doi.org/10.1016/j.proeng.2016.06.073
url http://hdl.handle.net/10316/108860
https://doi.org/10.1016/j.proeng.2016.06.073
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 18777058
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134134367420416