Relative numerical ranges

Detalhes bibliográficos
Autor(a) principal: Bracic, J.
Data de Publicação: 2015
Outros Autores: Diogo, C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/10831
Resumo: Relying on the ideas of Stampfli [14] and Magajna [12] we introduce, for operators S and T on a separable complex Hilbert space, a new notion called the numerical range of S relative to T at r is an element of sigma(vertical bar T vertical bar). Some properties of these numerical ranges are proved. In particular, it is shown that the relative numerical ranges are non-empty convex subsets of the closure of the ordinary numerical range of S. We show that the position of zero with respect to the relative numerical range of S relative to T at parallel to T parallel to gives an information about the distance between the involved operators. This result has many interesting corollaries. For instance, one can characterize those complex numbers which are in the closure of the numerical range of S but are not in the spectrum of S.
id RCAP_49d545d64526ab9f2da1fa13e8f5fc34
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/10831
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Relative numerical rangesNumerical rangeRelying on the ideas of Stampfli [14] and Magajna [12] we introduce, for operators S and T on a separable complex Hilbert space, a new notion called the numerical range of S relative to T at r is an element of sigma(vertical bar T vertical bar). Some properties of these numerical ranges are proved. In particular, it is shown that the relative numerical ranges are non-empty convex subsets of the closure of the ordinary numerical range of S. We show that the position of zero with respect to the relative numerical range of S relative to T at parallel to T parallel to gives an information about the distance between the involved operators. This result has many interesting corollaries. For instance, one can characterize those complex numbers which are in the closure of the numerical range of S but are not in the spectrum of S.Elsevier2016-02-02T14:24:01Z2015-01-01T00:00:00Z20152019-03-28T16:35:56Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/10831eng0024-379510.1016/j.laa.2015.07.037Bracic, J.Diogo, C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:43:51Zoai:repositorio.iscte-iul.pt:10071/10831Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:20:42.022966Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Relative numerical ranges
title Relative numerical ranges
spellingShingle Relative numerical ranges
Bracic, J.
Numerical range
title_short Relative numerical ranges
title_full Relative numerical ranges
title_fullStr Relative numerical ranges
title_full_unstemmed Relative numerical ranges
title_sort Relative numerical ranges
author Bracic, J.
author_facet Bracic, J.
Diogo, C.
author_role author
author2 Diogo, C.
author2_role author
dc.contributor.author.fl_str_mv Bracic, J.
Diogo, C.
dc.subject.por.fl_str_mv Numerical range
topic Numerical range
description Relying on the ideas of Stampfli [14] and Magajna [12] we introduce, for operators S and T on a separable complex Hilbert space, a new notion called the numerical range of S relative to T at r is an element of sigma(vertical bar T vertical bar). Some properties of these numerical ranges are proved. In particular, it is shown that the relative numerical ranges are non-empty convex subsets of the closure of the ordinary numerical range of S. We show that the position of zero with respect to the relative numerical range of S relative to T at parallel to T parallel to gives an information about the distance between the involved operators. This result has many interesting corollaries. For instance, one can characterize those complex numbers which are in the closure of the numerical range of S but are not in the spectrum of S.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01T00:00:00Z
2015
2016-02-02T14:24:01Z
2019-03-28T16:35:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/10831
url http://hdl.handle.net/10071/10831
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0024-3795
10.1016/j.laa.2015.07.037
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134767244902400