Noise is not error : detecting parametric heterogeneity between epidemiologic time series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/45075 |
Resumo: | © Copyright © 2018 Romero-Severson, Ribeiro and Castro. This is an open-accessarticle distributed under the terms of the Creative Commons Attribution License (CCBY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
id |
RCAP_49eb91d87b914b1399a96f7446c78220 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/45075 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Noise is not error : detecting parametric heterogeneity between epidemiologic time seriesDeterministicEpidemiologyFixed effectsPanel dataRandom effectsStochastic deterministic© Copyright © 2018 Romero-Severson, Ribeiro and Castro. This is an open-accessarticle distributed under the terms of the Creative Commons Attribution License (CCBY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Mathematical models play a central role in epidemiology. For example, models unify heterogeneous data into a single framework, suggest experimental designs, and generate hypotheses. Traditional methods based on deterministic assumptions, such as ordinary differential equations (ODE), have been successful in those scenarios. However, noise caused by random variations rather than true differences is an intrinsic feature of the cellular/molecular/social world. Time series data from patients (in the case of clinical science) or number of infections (in the case of epidemics) can vary due to both intrinsic differences or incidental fluctuations. The use of traditional fitting methods for ODEs applied to noisy problems implies that deviation from some trend can only be due to error or parametric heterogeneity, that is noise can be wrongly classified as parametric heterogeneity. This leads to unstable predictions and potentially misguided policies or research programs. In this paper, we quantify the ability of ODEs under different hypotheses (fixed or random effects) to capture individual differences in the underlying data. We explore a simple (exactly solvable) example displaying an initial exponential growth by comparing state-of-the-art stochastic fitting and traditional least squares approximations. We also provide a potential approach for determining the limitations and risks of traditional fitting methodologies. Finally, we discuss the implications of our results for the interpretation of data from the 2014-2015 Ebola epidemic in Africa.This work was funded by NIH grants R01-AI087520 and R01-AI104373; grants FIS2013-47949-C2-2-P and FIS2016-78883-C2-2-P and PRX 16/00287 (Spain); and PIRSES-GA-2012-317893 (7th FP, EU).FrontiersRepositório da Universidade de LisboaRomero-Severson, Ethan O.Ribeiro, Ruy M.Castro, Mário2020-12-02T14:38:20Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/45075engFrontiers in Microbiology 1 July 2018 | Volume 9 | Article 152910.3389/fmicb.2018.01529.1664-302Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:46:34Zoai:repositorio.ul.pt:10451/45075Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:57:34.069158Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Noise is not error : detecting parametric heterogeneity between epidemiologic time series |
title |
Noise is not error : detecting parametric heterogeneity between epidemiologic time series |
spellingShingle |
Noise is not error : detecting parametric heterogeneity between epidemiologic time series Romero-Severson, Ethan O. Deterministic Epidemiology Fixed effects Panel data Random effects Stochastic deterministic |
title_short |
Noise is not error : detecting parametric heterogeneity between epidemiologic time series |
title_full |
Noise is not error : detecting parametric heterogeneity between epidemiologic time series |
title_fullStr |
Noise is not error : detecting parametric heterogeneity between epidemiologic time series |
title_full_unstemmed |
Noise is not error : detecting parametric heterogeneity between epidemiologic time series |
title_sort |
Noise is not error : detecting parametric heterogeneity between epidemiologic time series |
author |
Romero-Severson, Ethan O. |
author_facet |
Romero-Severson, Ethan O. Ribeiro, Ruy M. Castro, Mário |
author_role |
author |
author2 |
Ribeiro, Ruy M. Castro, Mário |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Romero-Severson, Ethan O. Ribeiro, Ruy M. Castro, Mário |
dc.subject.por.fl_str_mv |
Deterministic Epidemiology Fixed effects Panel data Random effects Stochastic deterministic |
topic |
Deterministic Epidemiology Fixed effects Panel data Random effects Stochastic deterministic |
description |
© Copyright © 2018 Romero-Severson, Ribeiro and Castro. This is an open-accessarticle distributed under the terms of the Creative Commons Attribution License (CCBY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z 2020-12-02T14:38:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/45075 |
url |
http://hdl.handle.net/10451/45075 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Frontiers in Microbiology 1 July 2018 | Volume 9 | Article 1529 10.3389/fmicb.2018.01529. 1664-302X |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers |
publisher.none.fl_str_mv |
Frontiers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134519507288064 |