Efficient feature selection filters for high-dimensional data

Detalhes bibliográficos
Autor(a) principal: J. Ferreira, Artur
Data de Publicação: 2012
Outros Autores: Figueiredo, Mário A. T.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/5081
Resumo: Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.
id RCAP_4a0b4841018cf4bfc89c4d73f82a1634
oai_identifier_str oai:repositorio.ipl.pt:10400.21/5081
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Efficient feature selection filters for high-dimensional dataFeature selectionFiltersDispersion measuresSimilarity measuresHigh-dimensional dataFeature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.Elsevier Science BVRCIPLJ. Ferreira, ArturFigueiredo, Mário A. T.2015-09-07T13:27:31Z2012-10-012012-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/5081engFERREIRA, Artur J.; FIGUEIREDO, Mário A. T. – Efficient feature selection filters for high-dimensional data. Pattern Recognition Letters. ISSN: 0167-8655. Vol. 33, N.º 13 (2012), pp. 1794-1804.0167-865510.1016/j.patrec.2012.05.019metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:47:58Zoai:repositorio.ipl.pt:10400.21/5081Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:14:24.554777Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Efficient feature selection filters for high-dimensional data
title Efficient feature selection filters for high-dimensional data
spellingShingle Efficient feature selection filters for high-dimensional data
J. Ferreira, Artur
Feature selection
Filters
Dispersion measures
Similarity measures
High-dimensional data
title_short Efficient feature selection filters for high-dimensional data
title_full Efficient feature selection filters for high-dimensional data
title_fullStr Efficient feature selection filters for high-dimensional data
title_full_unstemmed Efficient feature selection filters for high-dimensional data
title_sort Efficient feature selection filters for high-dimensional data
author J. Ferreira, Artur
author_facet J. Ferreira, Artur
Figueiredo, Mário A. T.
author_role author
author2 Figueiredo, Mário A. T.
author2_role author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv J. Ferreira, Artur
Figueiredo, Mário A. T.
dc.subject.por.fl_str_mv Feature selection
Filters
Dispersion measures
Similarity measures
High-dimensional data
topic Feature selection
Filters
Dispersion measures
Similarity measures
High-dimensional data
description Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.
publishDate 2012
dc.date.none.fl_str_mv 2012-10-01
2012-10-01T00:00:00Z
2015-09-07T13:27:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/5081
url http://hdl.handle.net/10400.21/5081
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv FERREIRA, Artur J.; FIGUEIREDO, Mário A. T. – Efficient feature selection filters for high-dimensional data. Pattern Recognition Letters. ISSN: 0167-8655. Vol. 33, N.º 13 (2012), pp. 1794-1804.
0167-8655
10.1016/j.patrec.2012.05.019
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Science BV
publisher.none.fl_str_mv Elsevier Science BV
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133401636143104