Social network embeddings for churn prediction

Detalhes bibliográficos
Autor(a) principal: Santos, Hugo Filipe Paulino dos
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/22051
Resumo: With the large adoption of Internet customers became more aware of existing services and their prices. From the perspective of companies acquiring a new customer is more expensive than maintaining existing ones. In this sense, companies began to address the challenge of leaving customers to other companies. Customer churn is even more challenging in the telecommunications sector, because customers can change operator faster due to shorter loyalty period and easy migration service to other telecommunications operators without associated costs. Anticipating churn is therefore a major concern for telecommunication companies, which leads them to carry out retention campaigns for these customers. Predictive models allows us to predict whether a customer will leave their operator using that client’s past information. The present work describes how a predictive model was build to predict the outflow of customers exploring customer relationships. Unlike other works, it uses a social network analysis that takes advantage of small customer representations (network embeddings) and allows to obtain better results than other methods.
id RCAP_4a55b7b42029b242f7ece87785a85911
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/22051
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Social network embeddings for churn predictionCustomer churnSocial network analysisNetwork embeddingsRotatividade de clientesAnálise de redes sociaisRepresentações latente de redeWith the large adoption of Internet customers became more aware of existing services and their prices. From the perspective of companies acquiring a new customer is more expensive than maintaining existing ones. In this sense, companies began to address the challenge of leaving customers to other companies. Customer churn is even more challenging in the telecommunications sector, because customers can change operator faster due to shorter loyalty period and easy migration service to other telecommunications operators without associated costs. Anticipating churn is therefore a major concern for telecommunication companies, which leads them to carry out retention campaigns for these customers. Predictive models allows us to predict whether a customer will leave their operator using that client’s past information. The present work describes how a predictive model was build to predict the outflow of customers exploring customer relationships. Unlike other works, it uses a social network analysis that takes advantage of small customer representations (network embeddings) and allows to obtain better results than other methods.Com a generalização da Internet os clientes tornaram-se mais informados dos serviços existentes e dos seus preços. Na perspetiva das empresas, adquirir um novo cliente é mais dispendioso que manter os existentes. Nesse sentido as empresas começaram a abordar o desafio da saída de clientes para outras companhias. A saída de clientes é ainda mais desafiante no setor das telecomunicações, porque os clientes podem mudar de operador com maior rapidez devido ao período de fidelização mais curto e à fácil migração do serviço para outros operadores de telecomunicações sem custos associados. Antecipar a saída é, portanto, uma grande preocupação para as empresas de telecomunicações, que as leva a realizar campanhas de retenção para esses clientes. Modelos preditivos permitem prever se um cliente vai abandonar a sua operadora atual usando informação passada desse cliente. O presente trabalho detalha como foi construído um modelo preditivo para prever a saída de clientes explorando relacionamentos entre clientes. Ao contrário de outros trabalhos, este utiliza uma análise de rede social que tira partido de representações de baixa dimensionalidade dos clientes (network embeddings) e permite obter melhores resultados que outros métodos.2021-02-17T17:08:42Z2020-12-21T00:00:00Z2020-12-212020-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/22051TID:202627306engSantos, Hugo Filipe Paulino dosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:23:19Zoai:repositorio.iscte-iul.pt:10071/22051Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:10:41.521943Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Social network embeddings for churn prediction
title Social network embeddings for churn prediction
spellingShingle Social network embeddings for churn prediction
Santos, Hugo Filipe Paulino dos
Customer churn
Social network analysis
Network embeddings
Rotatividade de clientes
Análise de redes sociais
Representações latente de rede
title_short Social network embeddings for churn prediction
title_full Social network embeddings for churn prediction
title_fullStr Social network embeddings for churn prediction
title_full_unstemmed Social network embeddings for churn prediction
title_sort Social network embeddings for churn prediction
author Santos, Hugo Filipe Paulino dos
author_facet Santos, Hugo Filipe Paulino dos
author_role author
dc.contributor.author.fl_str_mv Santos, Hugo Filipe Paulino dos
dc.subject.por.fl_str_mv Customer churn
Social network analysis
Network embeddings
Rotatividade de clientes
Análise de redes sociais
Representações latente de rede
topic Customer churn
Social network analysis
Network embeddings
Rotatividade de clientes
Análise de redes sociais
Representações latente de rede
description With the large adoption of Internet customers became more aware of existing services and their prices. From the perspective of companies acquiring a new customer is more expensive than maintaining existing ones. In this sense, companies began to address the challenge of leaving customers to other companies. Customer churn is even more challenging in the telecommunications sector, because customers can change operator faster due to shorter loyalty period and easy migration service to other telecommunications operators without associated costs. Anticipating churn is therefore a major concern for telecommunication companies, which leads them to carry out retention campaigns for these customers. Predictive models allows us to predict whether a customer will leave their operator using that client’s past information. The present work describes how a predictive model was build to predict the outflow of customers exploring customer relationships. Unlike other works, it uses a social network analysis that takes advantage of small customer representations (network embeddings) and allows to obtain better results than other methods.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-21T00:00:00Z
2020-12-21
2020-11
2021-02-17T17:08:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/22051
TID:202627306
url http://hdl.handle.net/10071/22051
identifier_str_mv TID:202627306
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134661162565632