Social network embeddings for churn prediction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/22051 |
Resumo: | With the large adoption of Internet customers became more aware of existing services and their prices. From the perspective of companies acquiring a new customer is more expensive than maintaining existing ones. In this sense, companies began to address the challenge of leaving customers to other companies. Customer churn is even more challenging in the telecommunications sector, because customers can change operator faster due to shorter loyalty period and easy migration service to other telecommunications operators without associated costs. Anticipating churn is therefore a major concern for telecommunication companies, which leads them to carry out retention campaigns for these customers. Predictive models allows us to predict whether a customer will leave their operator using that client’s past information. The present work describes how a predictive model was build to predict the outflow of customers exploring customer relationships. Unlike other works, it uses a social network analysis that takes advantage of small customer representations (network embeddings) and allows to obtain better results than other methods. |
id |
RCAP_4a55b7b42029b242f7ece87785a85911 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/22051 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Social network embeddings for churn predictionCustomer churnSocial network analysisNetwork embeddingsRotatividade de clientesAnálise de redes sociaisRepresentações latente de redeWith the large adoption of Internet customers became more aware of existing services and their prices. From the perspective of companies acquiring a new customer is more expensive than maintaining existing ones. In this sense, companies began to address the challenge of leaving customers to other companies. Customer churn is even more challenging in the telecommunications sector, because customers can change operator faster due to shorter loyalty period and easy migration service to other telecommunications operators without associated costs. Anticipating churn is therefore a major concern for telecommunication companies, which leads them to carry out retention campaigns for these customers. Predictive models allows us to predict whether a customer will leave their operator using that client’s past information. The present work describes how a predictive model was build to predict the outflow of customers exploring customer relationships. Unlike other works, it uses a social network analysis that takes advantage of small customer representations (network embeddings) and allows to obtain better results than other methods.Com a generalização da Internet os clientes tornaram-se mais informados dos serviços existentes e dos seus preços. Na perspetiva das empresas, adquirir um novo cliente é mais dispendioso que manter os existentes. Nesse sentido as empresas começaram a abordar o desafio da saída de clientes para outras companhias. A saída de clientes é ainda mais desafiante no setor das telecomunicações, porque os clientes podem mudar de operador com maior rapidez devido ao período de fidelização mais curto e à fácil migração do serviço para outros operadores de telecomunicações sem custos associados. Antecipar a saída é, portanto, uma grande preocupação para as empresas de telecomunicações, que as leva a realizar campanhas de retenção para esses clientes. Modelos preditivos permitem prever se um cliente vai abandonar a sua operadora atual usando informação passada desse cliente. O presente trabalho detalha como foi construído um modelo preditivo para prever a saída de clientes explorando relacionamentos entre clientes. Ao contrário de outros trabalhos, este utiliza uma análise de rede social que tira partido de representações de baixa dimensionalidade dos clientes (network embeddings) e permite obter melhores resultados que outros métodos.2021-02-17T17:08:42Z2020-12-21T00:00:00Z2020-12-212020-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/22051TID:202627306engSantos, Hugo Filipe Paulino dosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:23:19Zoai:repositorio.iscte-iul.pt:10071/22051Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:10:41.521943Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Social network embeddings for churn prediction |
title |
Social network embeddings for churn prediction |
spellingShingle |
Social network embeddings for churn prediction Santos, Hugo Filipe Paulino dos Customer churn Social network analysis Network embeddings Rotatividade de clientes Análise de redes sociais Representações latente de rede |
title_short |
Social network embeddings for churn prediction |
title_full |
Social network embeddings for churn prediction |
title_fullStr |
Social network embeddings for churn prediction |
title_full_unstemmed |
Social network embeddings for churn prediction |
title_sort |
Social network embeddings for churn prediction |
author |
Santos, Hugo Filipe Paulino dos |
author_facet |
Santos, Hugo Filipe Paulino dos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Santos, Hugo Filipe Paulino dos |
dc.subject.por.fl_str_mv |
Customer churn Social network analysis Network embeddings Rotatividade de clientes Análise de redes sociais Representações latente de rede |
topic |
Customer churn Social network analysis Network embeddings Rotatividade de clientes Análise de redes sociais Representações latente de rede |
description |
With the large adoption of Internet customers became more aware of existing services and their prices. From the perspective of companies acquiring a new customer is more expensive than maintaining existing ones. In this sense, companies began to address the challenge of leaving customers to other companies. Customer churn is even more challenging in the telecommunications sector, because customers can change operator faster due to shorter loyalty period and easy migration service to other telecommunications operators without associated costs. Anticipating churn is therefore a major concern for telecommunication companies, which leads them to carry out retention campaigns for these customers. Predictive models allows us to predict whether a customer will leave their operator using that client’s past information. The present work describes how a predictive model was build to predict the outflow of customers exploring customer relationships. Unlike other works, it uses a social network analysis that takes advantage of small customer representations (network embeddings) and allows to obtain better results than other methods. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-21T00:00:00Z 2020-12-21 2020-11 2021-02-17T17:08:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/22051 TID:202627306 |
url |
http://hdl.handle.net/10071/22051 |
identifier_str_mv |
TID:202627306 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134661162565632 |