On the entropy of conservative flows
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/13882 |
Resumo: | We obtain a C1-generic subset of the incompressible flows in a closed three-dimensional manifold where Pesin’s entropy formula holds thus establishing the continuous-time version of Tahzibi (C R Acad Sci Paris I 335:1057–1062, 2002). Moreover, in any compact manifold of dimension larger or equal to three we obtain that the metric entropy function and the integrated upper Lyapunov exponent function are not continuous with respect to the C1 Whitney topology. Finally, we establish the C2- genericity of Pesin’s entropy formula in the context of Hamiltonian four-dimensional flows. |
id |
RCAP_4b2e4871d98a27040574f6083de6d56a |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/13882 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the entropy of conservative flowsDivergence-free vector fieldsHamiltoniansLyapunov exponentsMetric entropyWe obtain a C1-generic subset of the incompressible flows in a closed three-dimensional manifold where Pesin’s entropy formula holds thus establishing the continuous-time version of Tahzibi (C R Acad Sci Paris I 335:1057–1062, 2002). Moreover, in any compact manifold of dimension larger or equal to three we obtain that the metric entropy function and the integrated upper Lyapunov exponent function are not continuous with respect to the C1 Whitney topology. Finally, we establish the C2- genericity of Pesin’s entropy formula in the context of Hamiltonian four-dimensional flows.SpringerRepositório AbertoBessa, MárioVarandas, Paulo2023-05-29T14:50:51Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/13882engM. Bessa, P. Varandas, On the Entropy of Conservative Flows, Qualitative Theory of Dynamical Systems, 10, 1, 11-22, 201010.1007/s12346-010-0033-6info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:46:13Zoai:repositorioaberto.uab.pt:10400.2/13882Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:52:48.149474Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the entropy of conservative flows |
title |
On the entropy of conservative flows |
spellingShingle |
On the entropy of conservative flows Bessa, Mário Divergence-free vector fields Hamiltonians Lyapunov exponents Metric entropy |
title_short |
On the entropy of conservative flows |
title_full |
On the entropy of conservative flows |
title_fullStr |
On the entropy of conservative flows |
title_full_unstemmed |
On the entropy of conservative flows |
title_sort |
On the entropy of conservative flows |
author |
Bessa, Mário |
author_facet |
Bessa, Mário Varandas, Paulo |
author_role |
author |
author2 |
Varandas, Paulo |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Bessa, Mário Varandas, Paulo |
dc.subject.por.fl_str_mv |
Divergence-free vector fields Hamiltonians Lyapunov exponents Metric entropy |
topic |
Divergence-free vector fields Hamiltonians Lyapunov exponents Metric entropy |
description |
We obtain a C1-generic subset of the incompressible flows in a closed three-dimensional manifold where Pesin’s entropy formula holds thus establishing the continuous-time version of Tahzibi (C R Acad Sci Paris I 335:1057–1062, 2002). Moreover, in any compact manifold of dimension larger or equal to three we obtain that the metric entropy function and the integrated upper Lyapunov exponent function are not continuous with respect to the C1 Whitney topology. Finally, we establish the C2- genericity of Pesin’s entropy formula in the context of Hamiltonian four-dimensional flows. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z 2023-05-29T14:50:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/13882 |
url |
http://hdl.handle.net/10400.2/13882 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
M. Bessa, P. Varandas, On the Entropy of Conservative Flows, Qualitative Theory of Dynamical Systems, 10, 1, 11-22, 2010 10.1007/s12346-010-0033-6 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135121779982336 |