Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models

Detalhes bibliográficos
Autor(a) principal: Ventura, Cláudia Cristina Valério
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/25481
Resumo: This thesis implements the Maximization-Maximization (MM) algorithm proposed by Forte and Lovreta (2012), where in the first step the expected assets rate of return and the asset volatility are estimated applying the Maximum Likelihood technique. As the firm’s assets value is not observable, the observed equity values are treated as transformed data in order to derive the log-likelihood function. In a second step, the default barrier is estimated according to the interests of shareholders, corresponding to the optimal level considered for the firm to default, and as the one that maximizes their participation. Using a sample of fifty-five companies and a time period for the estimation of one year, our results prove that estimating the expected rate of return is hard and does not provide statistically significant results, as it is dependent and highly correlated to the observed equity values. The results for the five-year default probabilities computed were most of them equal to zero or too high.
id RCAP_4b3234fa28fd7469eb056c63efee314e
oai_identifier_str oai:repositorio.ucp.pt:10400.14/25481
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk modelsDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis thesis implements the Maximization-Maximization (MM) algorithm proposed by Forte and Lovreta (2012), where in the first step the expected assets rate of return and the asset volatility are estimated applying the Maximum Likelihood technique. As the firm’s assets value is not observable, the observed equity values are treated as transformed data in order to derive the log-likelihood function. In a second step, the default barrier is estimated according to the interests of shareholders, corresponding to the optimal level considered for the firm to default, and as the one that maximizes their participation. Using a sample of fifty-five companies and a time period for the estimation of one year, our results prove that estimating the expected rate of return is hard and does not provide statistically significant results, as it is dependent and highly correlated to the observed equity values. The results for the five-year default probabilities computed were most of them equal to zero or too high.Esta tese implementa o algoritmo Maximization-Maximization (MM) proposto por Forte e Lovreta (2012), em que no primeiro passo, o retorno esperado dos ativos e a volatilidade destes são estimados aplicando a técnica da Máxima Verosimilhança. Como o valor dos ativos da empresa não é observável, os valores do capital próprio são tratados como dados transformados de forma a derivar a função log-likelihood. Num segundo passo, a barreira de incumprimento é estimada de acordo com os interesses dos acionistas, correspondendo ao nível ótimo considerado para a empresa entrar em incumprimento, bem como àquela que maximiza a participação destes. Usando uma amostra de cinquenta e cinco empresas e um período de tempo de um ano para a estimação, os nossos resultados mostram que estimar a taxa de retorno esperado dos ativos é difícil e não fornece resultados estatisticamente significativos, por ser dependente e fortemente correlacionado com os valores do capital próprio. Os resultados das probabilidades de incumprimento a cinco anos calculadas foram na maioria igual a zero ou demasiado altas.Silva, Nuno Ricardo Raimundo Rodrigues Marques daVeritati - Repositório Institucional da Universidade Católica PortuguesaVentura, Cláudia Cristina Valério2018-08-07T11:04:57Z2018-07-2620182018-07-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/25481TID:201961997enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:30:52Zoai:repositorio.ucp.pt:10400.14/25481Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:20:19.556580Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models
title Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models
spellingShingle Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models
Ventura, Cláudia Cristina Valério
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models
title_full Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models
title_fullStr Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models
title_full_unstemmed Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models
title_sort Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models
author Ventura, Cláudia Cristina Valério
author_facet Ventura, Cláudia Cristina Valério
author_role author
dc.contributor.none.fl_str_mv Silva, Nuno Ricardo Raimundo Rodrigues Marques da
Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Ventura, Cláudia Cristina Valério
dc.subject.por.fl_str_mv Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description This thesis implements the Maximization-Maximization (MM) algorithm proposed by Forte and Lovreta (2012), where in the first step the expected assets rate of return and the asset volatility are estimated applying the Maximum Likelihood technique. As the firm’s assets value is not observable, the observed equity values are treated as transformed data in order to derive the log-likelihood function. In a second step, the default barrier is estimated according to the interests of shareholders, corresponding to the optimal level considered for the firm to default, and as the one that maximizes their participation. Using a sample of fifty-five companies and a time period for the estimation of one year, our results prove that estimating the expected rate of return is hard and does not provide statistically significant results, as it is dependent and highly correlated to the observed equity values. The results for the five-year default probabilities computed were most of them equal to zero or too high.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-07T11:04:57Z
2018-07-26
2018
2018-07-26T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/25481
TID:201961997
url http://hdl.handle.net/10400.14/25481
identifier_str_mv TID:201961997
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131901069361152