Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/25481 |
Resumo: | This thesis implements the Maximization-Maximization (MM) algorithm proposed by Forte and Lovreta (2012), where in the first step the expected assets rate of return and the asset volatility are estimated applying the Maximum Likelihood technique. As the firm’s assets value is not observable, the observed equity values are treated as transformed data in order to derive the log-likelihood function. In a second step, the default barrier is estimated according to the interests of shareholders, corresponding to the optimal level considered for the firm to default, and as the one that maximizes their participation. Using a sample of fifty-five companies and a time period for the estimation of one year, our results prove that estimating the expected rate of return is hard and does not provide statistically significant results, as it is dependent and highly correlated to the observed equity values. The results for the five-year default probabilities computed were most of them equal to zero or too high. |
id |
RCAP_4b3234fa28fd7469eb056c63efee314e |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/25481 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk modelsDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis thesis implements the Maximization-Maximization (MM) algorithm proposed by Forte and Lovreta (2012), where in the first step the expected assets rate of return and the asset volatility are estimated applying the Maximum Likelihood technique. As the firm’s assets value is not observable, the observed equity values are treated as transformed data in order to derive the log-likelihood function. In a second step, the default barrier is estimated according to the interests of shareholders, corresponding to the optimal level considered for the firm to default, and as the one that maximizes their participation. Using a sample of fifty-five companies and a time period for the estimation of one year, our results prove that estimating the expected rate of return is hard and does not provide statistically significant results, as it is dependent and highly correlated to the observed equity values. The results for the five-year default probabilities computed were most of them equal to zero or too high.Esta tese implementa o algoritmo Maximization-Maximization (MM) proposto por Forte e Lovreta (2012), em que no primeiro passo, o retorno esperado dos ativos e a volatilidade destes são estimados aplicando a técnica da Máxima Verosimilhança. Como o valor dos ativos da empresa não é observável, os valores do capital próprio são tratados como dados transformados de forma a derivar a função log-likelihood. Num segundo passo, a barreira de incumprimento é estimada de acordo com os interesses dos acionistas, correspondendo ao nível ótimo considerado para a empresa entrar em incumprimento, bem como àquela que maximiza a participação destes. Usando uma amostra de cinquenta e cinco empresas e um período de tempo de um ano para a estimação, os nossos resultados mostram que estimar a taxa de retorno esperado dos ativos é difícil e não fornece resultados estatisticamente significativos, por ser dependente e fortemente correlacionado com os valores do capital próprio. Os resultados das probabilidades de incumprimento a cinco anos calculadas foram na maioria igual a zero ou demasiado altas.Silva, Nuno Ricardo Raimundo Rodrigues Marques daVeritati - Repositório Institucional da Universidade Católica PortuguesaVentura, Cláudia Cristina Valério2018-08-07T11:04:57Z2018-07-2620182018-07-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/25481TID:201961997enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:30:52Zoai:repositorio.ucp.pt:10400.14/25481Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:20:19.556580Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models |
title |
Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models |
spellingShingle |
Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models Ventura, Cláudia Cristina Valério Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models |
title_full |
Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models |
title_fullStr |
Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models |
title_full_unstemmed |
Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models |
title_sort |
Evaluating the Maximization-Maximization approach to measure default probabilities on structural credit risk models |
author |
Ventura, Cláudia Cristina Valério |
author_facet |
Ventura, Cláudia Cristina Valério |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Nuno Ricardo Raimundo Rodrigues Marques da Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Ventura, Cláudia Cristina Valério |
dc.subject.por.fl_str_mv |
Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This thesis implements the Maximization-Maximization (MM) algorithm proposed by Forte and Lovreta (2012), where in the first step the expected assets rate of return and the asset volatility are estimated applying the Maximum Likelihood technique. As the firm’s assets value is not observable, the observed equity values are treated as transformed data in order to derive the log-likelihood function. In a second step, the default barrier is estimated according to the interests of shareholders, corresponding to the optimal level considered for the firm to default, and as the one that maximizes their participation. Using a sample of fifty-five companies and a time period for the estimation of one year, our results prove that estimating the expected rate of return is hard and does not provide statistically significant results, as it is dependent and highly correlated to the observed equity values. The results for the five-year default probabilities computed were most of them equal to zero or too high. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-07T11:04:57Z 2018-07-26 2018 2018-07-26T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/25481 TID:201961997 |
url |
http://hdl.handle.net/10400.14/25481 |
identifier_str_mv |
TID:201961997 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131901069361152 |