On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems

Detalhes bibliográficos
Autor(a) principal: Castro, Luís P.
Data de Publicação: 2023
Outros Autores: Silva, Anabela S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/36607
Resumo: This article deals with a class of nonlinear fractional differential equations, with initial conditions, involving the Riemann–Liouville fractional derivative of order $\alpha \in (1, 2)$. The main objectives are to obtain conditions for the existence and uniqueness of solutions (within appropriate spaces), and to analyze the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias types. In fact, different conditions for the existence and uniqueness of solutions are obtained based on the analysis of an associated class of fractional integral equations and distinct fixed-point arguments. Additionally, using a Bielecki-type metric and some additional contractive arguments, conditions are also obtained to guarantee Ulam–Hyers and Ulam–Hyers–Rassias stabilities for the problems under analysis. Examples are also included to illustrate the theory.
id RCAP_4c111c70dea40fa2e641977b24228a42
oai_identifier_str oai:ria.ua.pt:10773/36607
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problemsFractional differential equationsRiemann–Liouville derivativeFixed point theoryUlam–Hyers stabilityUlam–Hyers–Rassias stabilityThis article deals with a class of nonlinear fractional differential equations, with initial conditions, involving the Riemann–Liouville fractional derivative of order $\alpha \in (1, 2)$. The main objectives are to obtain conditions for the existence and uniqueness of solutions (within appropriate spaces), and to analyze the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias types. In fact, different conditions for the existence and uniqueness of solutions are obtained based on the analysis of an associated class of fractional integral equations and distinct fixed-point arguments. Additionally, using a Bielecki-type metric and some additional contractive arguments, conditions are also obtained to guarantee Ulam–Hyers and Ulam–Hyers–Rassias stabilities for the problems under analysis. Examples are also included to illustrate the theory.MDPI2023-03-20T16:39:46Z2023-01-06T00:00:00Z2023-01-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36607eng10.3390/math11020297Castro, Luís P.Silva, Anabela S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:09:13Zoai:ria.ua.pt:10773/36607Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:52.412112Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems
title On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems
spellingShingle On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems
Castro, Luís P.
Fractional differential equations
Riemann–Liouville derivative
Fixed point theory
Ulam–Hyers stability
Ulam–Hyers–Rassias stability
title_short On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems
title_full On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems
title_fullStr On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems
title_full_unstemmed On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems
title_sort On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems
author Castro, Luís P.
author_facet Castro, Luís P.
Silva, Anabela S.
author_role author
author2 Silva, Anabela S.
author2_role author
dc.contributor.author.fl_str_mv Castro, Luís P.
Silva, Anabela S.
dc.subject.por.fl_str_mv Fractional differential equations
Riemann–Liouville derivative
Fixed point theory
Ulam–Hyers stability
Ulam–Hyers–Rassias stability
topic Fractional differential equations
Riemann–Liouville derivative
Fixed point theory
Ulam–Hyers stability
Ulam–Hyers–Rassias stability
description This article deals with a class of nonlinear fractional differential equations, with initial conditions, involving the Riemann–Liouville fractional derivative of order $\alpha \in (1, 2)$. The main objectives are to obtain conditions for the existence and uniqueness of solutions (within appropriate spaces), and to analyze the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias types. In fact, different conditions for the existence and uniqueness of solutions are obtained based on the analysis of an associated class of fractional integral equations and distinct fixed-point arguments. Additionally, using a Bielecki-type metric and some additional contractive arguments, conditions are also obtained to guarantee Ulam–Hyers and Ulam–Hyers–Rassias stabilities for the problems under analysis. Examples are also included to illustrate the theory.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-20T16:39:46Z
2023-01-06T00:00:00Z
2023-01-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/36607
url http://hdl.handle.net/10773/36607
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/math11020297
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137724163162112