On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/36607 |
Resumo: | This article deals with a class of nonlinear fractional differential equations, with initial conditions, involving the Riemann–Liouville fractional derivative of order $\alpha \in (1, 2)$. The main objectives are to obtain conditions for the existence and uniqueness of solutions (within appropriate spaces), and to analyze the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias types. In fact, different conditions for the existence and uniqueness of solutions are obtained based on the analysis of an associated class of fractional integral equations and distinct fixed-point arguments. Additionally, using a Bielecki-type metric and some additional contractive arguments, conditions are also obtained to guarantee Ulam–Hyers and Ulam–Hyers–Rassias stabilities for the problems under analysis. Examples are also included to illustrate the theory. |
id |
RCAP_4c111c70dea40fa2e641977b24228a42 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/36607 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problemsFractional differential equationsRiemann–Liouville derivativeFixed point theoryUlam–Hyers stabilityUlam–Hyers–Rassias stabilityThis article deals with a class of nonlinear fractional differential equations, with initial conditions, involving the Riemann–Liouville fractional derivative of order $\alpha \in (1, 2)$. The main objectives are to obtain conditions for the existence and uniqueness of solutions (within appropriate spaces), and to analyze the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias types. In fact, different conditions for the existence and uniqueness of solutions are obtained based on the analysis of an associated class of fractional integral equations and distinct fixed-point arguments. Additionally, using a Bielecki-type metric and some additional contractive arguments, conditions are also obtained to guarantee Ulam–Hyers and Ulam–Hyers–Rassias stabilities for the problems under analysis. Examples are also included to illustrate the theory.MDPI2023-03-20T16:39:46Z2023-01-06T00:00:00Z2023-01-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36607eng10.3390/math11020297Castro, Luís P.Silva, Anabela S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:09:13Zoai:ria.ua.pt:10773/36607Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:52.412112Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems |
title |
On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems |
spellingShingle |
On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems Castro, Luís P. Fractional differential equations Riemann–Liouville derivative Fixed point theory Ulam–Hyers stability Ulam–Hyers–Rassias stability |
title_short |
On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems |
title_full |
On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems |
title_fullStr |
On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems |
title_full_unstemmed |
On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems |
title_sort |
On the existence and stability of solutions for a class of fractional Riemann–Liouville initial value problems |
author |
Castro, Luís P. |
author_facet |
Castro, Luís P. Silva, Anabela S. |
author_role |
author |
author2 |
Silva, Anabela S. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Castro, Luís P. Silva, Anabela S. |
dc.subject.por.fl_str_mv |
Fractional differential equations Riemann–Liouville derivative Fixed point theory Ulam–Hyers stability Ulam–Hyers–Rassias stability |
topic |
Fractional differential equations Riemann–Liouville derivative Fixed point theory Ulam–Hyers stability Ulam–Hyers–Rassias stability |
description |
This article deals with a class of nonlinear fractional differential equations, with initial conditions, involving the Riemann–Liouville fractional derivative of order $\alpha \in (1, 2)$. The main objectives are to obtain conditions for the existence and uniqueness of solutions (within appropriate spaces), and to analyze the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias types. In fact, different conditions for the existence and uniqueness of solutions are obtained based on the analysis of an associated class of fractional integral equations and distinct fixed-point arguments. Additionally, using a Bielecki-type metric and some additional contractive arguments, conditions are also obtained to guarantee Ulam–Hyers and Ulam–Hyers–Rassias stabilities for the problems under analysis. Examples are also included to illustrate the theory. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-20T16:39:46Z 2023-01-06T00:00:00Z 2023-01-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/36607 |
url |
http://hdl.handle.net/10773/36607 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/math11020297 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137724163162112 |