On tuning the particle swarm optimization for solving the traffic light problem

Detalhes bibliográficos
Autor(a) principal: Silva, Gonçalo O.
Data de Publicação: 2022
Outros Autores: Rocha, Ana Maria A. C., Witeck, Gabriela R., Silva, António José Linhares, Durães, Dalila, Machado, José Manuel
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/81692
Resumo: In everyday routines, there are multiple situations of high traffic congestion, especially in large cities. Traffic light timed regulated intersections are one of the solutions used to improve traffic flow without the need for large-scale and costly infrastructure changes. A specific situation where traffic lights are used is on single-lane roads, often found on roads under maintenance, narrow roads or bridges where it is impossible to have two lanes. In this paper, a simulation-optimization strategy is tested for this scenario. A Particle Swarm Optimization algorithm is used to find the optimal solution to the traffic light timing problem in order to reduce the waiting times for crossing the lane in a simulated vehicle system. To assess vehicle waiting times, a network is implemented using the Simulation of Urban MObility software. The performance of the PSO is analyzed by testing different parameters of the algorithm in solving the optimization problem. The results of the traffic light time optimization show that the proposed methodology is able to obtain a decrease of almost 26% in the average waiting times.
id RCAP_4c128b8535585db97b8f670390cd042b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/81692
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On tuning the particle swarm optimization for solving the traffic light problemParticle swarm optimizationSimulation of urban mobilityTraffic lights problemIn everyday routines, there are multiple situations of high traffic congestion, especially in large cities. Traffic light timed regulated intersections are one of the solutions used to improve traffic flow without the need for large-scale and costly infrastructure changes. A specific situation where traffic lights are used is on single-lane roads, often found on roads under maintenance, narrow roads or bridges where it is impossible to have two lanes. In this paper, a simulation-optimization strategy is tested for this scenario. A Particle Swarm Optimization algorithm is used to find the optimal solution to the traffic light timing problem in order to reduce the waiting times for crossing the lane in a simulated vehicle system. To assess vehicle waiting times, a network is implemented using the Simulation of Urban MObility software. The performance of the PSO is analyzed by testing different parameters of the algorithm in solving the optimization problem. The results of the traffic light time optimization show that the proposed methodology is able to obtain a decrease of almost 26% in the average waiting times.This work has been supported by FCT-Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/00319/2020 and the project “Integrated and Innovative Solutions for the well-being of people in complex urban centers” within the Project Scope NORTE-01-0145-FEDER-000086.Springer, ChamUniversidade do MinhoSilva, Gonçalo O.Rocha, Ana Maria A. C.Witeck, Gabriela R.Silva, António José LinharesDurães, DalilaMachado, José Manuel20222022-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/81692engSilva, G.O., Rocha, A.M.A.C., Witeck, G.R., Silva, A., Durães, D., Machado, J. (2022). On Tuning the Particle Swarm Optimization for Solving the Traffic Light Problem. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13378. Springer, Cham. https://doi.org/10.1007/978-3-031-10562-3_697830311056160302-974310.1007/978-3-031-10562-3_6https://link.springer.com/chapter/10.1007/978-3-031-10562-3_6info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:20:55Zoai:repositorium.sdum.uminho.pt:1822/81692Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:20:55Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On tuning the particle swarm optimization for solving the traffic light problem
title On tuning the particle swarm optimization for solving the traffic light problem
spellingShingle On tuning the particle swarm optimization for solving the traffic light problem
Silva, Gonçalo O.
Particle swarm optimization
Simulation of urban mobility
Traffic lights problem
title_short On tuning the particle swarm optimization for solving the traffic light problem
title_full On tuning the particle swarm optimization for solving the traffic light problem
title_fullStr On tuning the particle swarm optimization for solving the traffic light problem
title_full_unstemmed On tuning the particle swarm optimization for solving the traffic light problem
title_sort On tuning the particle swarm optimization for solving the traffic light problem
author Silva, Gonçalo O.
author_facet Silva, Gonçalo O.
Rocha, Ana Maria A. C.
Witeck, Gabriela R.
Silva, António José Linhares
Durães, Dalila
Machado, José Manuel
author_role author
author2 Rocha, Ana Maria A. C.
Witeck, Gabriela R.
Silva, António José Linhares
Durães, Dalila
Machado, José Manuel
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Silva, Gonçalo O.
Rocha, Ana Maria A. C.
Witeck, Gabriela R.
Silva, António José Linhares
Durães, Dalila
Machado, José Manuel
dc.subject.por.fl_str_mv Particle swarm optimization
Simulation of urban mobility
Traffic lights problem
topic Particle swarm optimization
Simulation of urban mobility
Traffic lights problem
description In everyday routines, there are multiple situations of high traffic congestion, especially in large cities. Traffic light timed regulated intersections are one of the solutions used to improve traffic flow without the need for large-scale and costly infrastructure changes. A specific situation where traffic lights are used is on single-lane roads, often found on roads under maintenance, narrow roads or bridges where it is impossible to have two lanes. In this paper, a simulation-optimization strategy is tested for this scenario. A Particle Swarm Optimization algorithm is used to find the optimal solution to the traffic light timing problem in order to reduce the waiting times for crossing the lane in a simulated vehicle system. To assess vehicle waiting times, a network is implemented using the Simulation of Urban MObility software. The performance of the PSO is analyzed by testing different parameters of the algorithm in solving the optimization problem. The results of the traffic light time optimization show that the proposed methodology is able to obtain a decrease of almost 26% in the average waiting times.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/81692
url https://hdl.handle.net/1822/81692
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Silva, G.O., Rocha, A.M.A.C., Witeck, G.R., Silva, A., Durães, D., Machado, J. (2022). On Tuning the Particle Swarm Optimization for Solving the Traffic Light Problem. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol 13378. Springer, Cham. https://doi.org/10.1007/978-3-031-10562-3_6
9783031105616
0302-9743
10.1007/978-3-031-10562-3_6
https://link.springer.com/chapter/10.1007/978-3-031-10562-3_6
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer, Cham
publisher.none.fl_str_mv Springer, Cham
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544941108199424