Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/103261 https://doi.org/10.3389/fninf.2022.807584 |
Resumo: | Machine learning modeling can provide valuable support in different areas of mental health, because it enables to make rapid predictions and therefore support the decision making, based on valuable data. However, few studies have applied this method to predict symptoms' worsening, based on sociodemographic, contextual, and clinical data. Thus, we applied machine learning techniques to identify predictors of symptomatologic changes in a Spanish cohort of OCD patients during the initial phase of the COVID-19 pandemic. |
id |
RCAP_4ca3c19dce5e6dd94b1bb8ab5c89ca21 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/103261 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder PatientsCOVID-19OCDY-BOCSclassificationmachine learningobsessive-compulsive disorderregressionMachine learning modeling can provide valuable support in different areas of mental health, because it enables to make rapid predictions and therefore support the decision making, based on valuable data. However, few studies have applied this method to predict symptoms' worsening, based on sociodemographic, contextual, and clinical data. Thus, we applied machine learning techniques to identify predictors of symptomatologic changes in a Spanish cohort of OCD patients during the initial phase of the COVID-19 pandemic.2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/103261http://hdl.handle.net/10316/103261https://doi.org/10.3389/fninf.2022.807584eng1662-5196Tubío-Fungueiriño, MaríaCernadas, EvaGonçalves, ÓscarSegalas, CintoBertolín, SaraMar-Barrutia, LoreaReal, EvaFernández-Delgado, ManuelMenchón, Jose MCarvalho, SandraAlonso, PinoCarracedo, AngelFernández-Prieto, Montseinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-10-31T21:32:36Zoai:estudogeral.uc.pt:10316/103261Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:20:07.474217Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients |
title |
Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients |
spellingShingle |
Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients Tubío-Fungueiriño, María COVID-19 OCD Y-BOCS classification machine learning obsessive-compulsive disorder regression |
title_short |
Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients |
title_full |
Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients |
title_fullStr |
Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients |
title_full_unstemmed |
Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients |
title_sort |
Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients |
author |
Tubío-Fungueiriño, María |
author_facet |
Tubío-Fungueiriño, María Cernadas, Eva Gonçalves, Óscar Segalas, Cinto Bertolín, Sara Mar-Barrutia, Lorea Real, Eva Fernández-Delgado, Manuel Menchón, Jose M Carvalho, Sandra Alonso, Pino Carracedo, Angel Fernández-Prieto, Montse |
author_role |
author |
author2 |
Cernadas, Eva Gonçalves, Óscar Segalas, Cinto Bertolín, Sara Mar-Barrutia, Lorea Real, Eva Fernández-Delgado, Manuel Menchón, Jose M Carvalho, Sandra Alonso, Pino Carracedo, Angel Fernández-Prieto, Montse |
author2_role |
author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Tubío-Fungueiriño, María Cernadas, Eva Gonçalves, Óscar Segalas, Cinto Bertolín, Sara Mar-Barrutia, Lorea Real, Eva Fernández-Delgado, Manuel Menchón, Jose M Carvalho, Sandra Alonso, Pino Carracedo, Angel Fernández-Prieto, Montse |
dc.subject.por.fl_str_mv |
COVID-19 OCD Y-BOCS classification machine learning obsessive-compulsive disorder regression |
topic |
COVID-19 OCD Y-BOCS classification machine learning obsessive-compulsive disorder regression |
description |
Machine learning modeling can provide valuable support in different areas of mental health, because it enables to make rapid predictions and therefore support the decision making, based on valuable data. However, few studies have applied this method to predict symptoms' worsening, based on sociodemographic, contextual, and clinical data. Thus, we applied machine learning techniques to identify predictors of symptomatologic changes in a Spanish cohort of OCD patients during the initial phase of the COVID-19 pandemic. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/103261 http://hdl.handle.net/10316/103261 https://doi.org/10.3389/fninf.2022.807584 |
url |
http://hdl.handle.net/10316/103261 https://doi.org/10.3389/fninf.2022.807584 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1662-5196 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134094546698240 |