A note on prime modules
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/25790 |
Resumo: | In this note we compare some notions of primeness for modules existing in the literature. We characterize the prime left R-modules such that the left annihilator of every element is a (two-sided) ideal of R, where R is an associative ring with unity, and we prove that if M is such a left R-module then M is strongly prime. These two notions are studied by Beachy [B75]. Furthermore, if M is projective as left R=(0 : M)-module then M is B-prime in the sense of Bican et al. [BJKN]. On the other hand, if M is faithful then M is (strongly) prime if and only if M is strongly prime (or an SP-module) in the sense of Handelman-Lawrence [HL] if and only if M is torsionfree and R is a domain. In particular this happens if R is commutative. |
id |
RCAP_4ce647e14f97e88ab187e32181b11501 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/25790 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A note on prime modulesÁlgebra, MatemáticaAlgebra, MathematicsIn this note we compare some notions of primeness for modules existing in the literature. We characterize the prime left R-modules such that the left annihilator of every element is a (two-sided) ideal of R, where R is an associative ring with unity, and we prove that if M is such a left R-module then M is strongly prime. These two notions are studied by Beachy [B75]. Furthermore, if M is projective as left R=(0 : M)-module then M is B-prime in the sense of Bican et al. [BJKN]. On the other hand, if M is faithful then M is (strongly) prime if and only if M is strongly prime (or an SP-module) in the sense of Handelman-Lawrence [HL] if and only if M is torsionfree and R is a domain. In particular this happens if R is commutative.20002000-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/25790eng1315-2068Christian LompA.J. Penainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:46:18Zoai:repositorio-aberto.up.pt:10216/25790Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:26:25.425803Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A note on prime modules |
title |
A note on prime modules |
spellingShingle |
A note on prime modules Christian Lomp Álgebra, Matemática Algebra, Mathematics |
title_short |
A note on prime modules |
title_full |
A note on prime modules |
title_fullStr |
A note on prime modules |
title_full_unstemmed |
A note on prime modules |
title_sort |
A note on prime modules |
author |
Christian Lomp |
author_facet |
Christian Lomp A.J. Pena |
author_role |
author |
author2 |
A.J. Pena |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Christian Lomp A.J. Pena |
dc.subject.por.fl_str_mv |
Álgebra, Matemática Algebra, Mathematics |
topic |
Álgebra, Matemática Algebra, Mathematics |
description |
In this note we compare some notions of primeness for modules existing in the literature. We characterize the prime left R-modules such that the left annihilator of every element is a (two-sided) ideal of R, where R is an associative ring with unity, and we prove that if M is such a left R-module then M is strongly prime. These two notions are studied by Beachy [B75]. Furthermore, if M is projective as left R=(0 : M)-module then M is B-prime in the sense of Bican et al. [BJKN]. On the other hand, if M is faithful then M is (strongly) prime if and only if M is strongly prime (or an SP-module) in the sense of Handelman-Lawrence [HL] if and only if M is torsionfree and R is a domain. In particular this happens if R is commutative. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 2000-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/25790 |
url |
https://hdl.handle.net/10216/25790 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1315-2068 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135570906054656 |