Fault detection system for the Évora irrigation canal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/10779 |
Resumo: | A model-based fault detection (FD) system was developed for a Simulink simulation of a four pool irrigation canal in ´Evora, Portugal. Incipient and abrupt faults in the gates, the water off-take valves and the water level sensors were considered. Neural Networks were used to model the canal and find the residue. The training algorithm employed for the NNs was found to be an important factor determining the success of the FD system. |
id |
RCAP_4d675ab3608dee40b130fcc09c101866 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/10779 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fault detection system for the Évora irrigation canalFault detectionFault-tolerant systemsControl applicationsNeural networksIrrigation canalsA model-based fault detection (FD) system was developed for a Simulink simulation of a four pool irrigation canal in ´Evora, Portugal. Incipient and abrupt faults in the gates, the water off-take valves and the water level sensors were considered. Neural Networks were used to model the canal and find the residue. The training algorithm employed for the NNs was found to be an important factor determining the success of the FD system.ElsevierRCIPLLouro, DiogoMendes, Mário J. G. C.Valério, DuarteCosta, José Sá da2019-12-02T11:31:45Z2012-012012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/10779engLOURO, Diogo; [et al] – Fault detection system for the Évora irrigation canal. IFAC Proceedings Volumes. ISSN 1474-6670. Vol. 45, N.º 20 (2012), pp. 750-7551474-6670https://doi.org/10.3182/20120829-3-MX-2028.00284metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:01:12Zoai:repositorio.ipl.pt:10400.21/10779Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:19:07.773079Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fault detection system for the Évora irrigation canal |
title |
Fault detection system for the Évora irrigation canal |
spellingShingle |
Fault detection system for the Évora irrigation canal Louro, Diogo Fault detection Fault-tolerant systems Control applications Neural networks Irrigation canals |
title_short |
Fault detection system for the Évora irrigation canal |
title_full |
Fault detection system for the Évora irrigation canal |
title_fullStr |
Fault detection system for the Évora irrigation canal |
title_full_unstemmed |
Fault detection system for the Évora irrigation canal |
title_sort |
Fault detection system for the Évora irrigation canal |
author |
Louro, Diogo |
author_facet |
Louro, Diogo Mendes, Mário J. G. C. Valério, Duarte Costa, José Sá da |
author_role |
author |
author2 |
Mendes, Mário J. G. C. Valério, Duarte Costa, José Sá da |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Louro, Diogo Mendes, Mário J. G. C. Valério, Duarte Costa, José Sá da |
dc.subject.por.fl_str_mv |
Fault detection Fault-tolerant systems Control applications Neural networks Irrigation canals |
topic |
Fault detection Fault-tolerant systems Control applications Neural networks Irrigation canals |
description |
A model-based fault detection (FD) system was developed for a Simulink simulation of a four pool irrigation canal in ´Evora, Portugal. Incipient and abrupt faults in the gates, the water off-take valves and the water level sensors were considered. Neural Networks were used to model the canal and find the residue. The training algorithm employed for the NNs was found to be an important factor determining the success of the FD system. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 2012-01-01T00:00:00Z 2019-12-02T11:31:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/10779 |
url |
http://hdl.handle.net/10400.21/10779 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
LOURO, Diogo; [et al] – Fault detection system for the Évora irrigation canal. IFAC Proceedings Volumes. ISSN 1474-6670. Vol. 45, N.º 20 (2012), pp. 750-755 1474-6670 https://doi.org/10.3182/20120829-3-MX-2028.00284 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133457847156736 |