Realizing transfer learning for updating deep learning models of spectral data to be used in new scenarios

Detalhes bibliográficos
Autor(a) principal: Mishra, Puneet
Data de Publicação: 2021
Outros Autores: Passos, Dário
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/15489
Resumo: This study presents the concept of transfer learning (TL) to the chemometrics community for updating DL models related to spectral data, particularly when a pre-trained DL model needs to be used in a scenario having unseen variability. This is the typical situation where classical chemometrics models require some form of re-calibration or update. In TL, the network architecture and weights from the pre-trained DL model are complemented by adding extra fully connected (FC) layers when dealing with the new data. Such extra FC layers are expected to learn the variability of the new scenario and adjust the output of the main architecture. Furthermore, three approaches of TL were compared, first where the weights from the initial model were left untrained and the only the newly added FC layers could be retrained. The second was when the weights from the initial model could be retrained alongside the new FC layers. The third was when the weights from the initial model could be re-trained with no extra FC layers added. The TL was shown using two real cases related to near-infrared spectroscopy i.e., mango fruit analysis and melamine production monitoring. In the case of mango, the model needs to be updated to cover a new seasonal variability for dry matter prediction, while, for the melamine case, the model needs to be updated for the change in the recipe of the production material. The results showed that the proposed TL approaches successfully updated the DL models to new scenarios for both the mango and melamine cases presented. The TL performed better when the weights from the old model were retrained. Furthermore, TL outperformed three recent benchmark approaches to model updating. TL has the potential to make DL models widely useable, sharable, and scalable.
id RCAP_4def6efce0d3ef0d1b3ee62577cf1a00
oai_identifier_str oai:sapientia.ualg.pt:10400.1/15489
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Realizing transfer learning for updating deep learning models of spectral data to be used in new scenariosTransfer learningGeneralizabilityProcess monitoringSpectroscopy;This study presents the concept of transfer learning (TL) to the chemometrics community for updating DL models related to spectral data, particularly when a pre-trained DL model needs to be used in a scenario having unseen variability. This is the typical situation where classical chemometrics models require some form of re-calibration or update. In TL, the network architecture and weights from the pre-trained DL model are complemented by adding extra fully connected (FC) layers when dealing with the new data. Such extra FC layers are expected to learn the variability of the new scenario and adjust the output of the main architecture. Furthermore, three approaches of TL were compared, first where the weights from the initial model were left untrained and the only the newly added FC layers could be retrained. The second was when the weights from the initial model could be retrained alongside the new FC layers. The third was when the weights from the initial model could be re-trained with no extra FC layers added. The TL was shown using two real cases related to near-infrared spectroscopy i.e., mango fruit analysis and melamine production monitoring. In the case of mango, the model needs to be updated to cover a new seasonal variability for dry matter prediction, while, for the melamine case, the model needs to be updated for the change in the recipe of the production material. The results showed that the proposed TL approaches successfully updated the DL models to new scenarios for both the mango and melamine cases presented. The TL performed better when the weights from the old model were retrained. Furthermore, TL outperformed three recent benchmark approaches to model updating. TL has the potential to make DL models widely useable, sharable, and scalable.SapientiaMishra, PuneetPassos, Dário2021-05-18T08:52:51Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/15489eng0169-743910.1016/j.chemolab.2021.104283info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:27:54Zoai:sapientia.ualg.pt:10400.1/15489Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:06:20.972797Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Realizing transfer learning for updating deep learning models of spectral data to be used in new scenarios
title Realizing transfer learning for updating deep learning models of spectral data to be used in new scenarios
spellingShingle Realizing transfer learning for updating deep learning models of spectral data to be used in new scenarios
Mishra, Puneet
Transfer learning
Generalizability
Process monitoring
Spectroscopy;
title_short Realizing transfer learning for updating deep learning models of spectral data to be used in new scenarios
title_full Realizing transfer learning for updating deep learning models of spectral data to be used in new scenarios
title_fullStr Realizing transfer learning for updating deep learning models of spectral data to be used in new scenarios
title_full_unstemmed Realizing transfer learning for updating deep learning models of spectral data to be used in new scenarios
title_sort Realizing transfer learning for updating deep learning models of spectral data to be used in new scenarios
author Mishra, Puneet
author_facet Mishra, Puneet
Passos, Dário
author_role author
author2 Passos, Dário
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Mishra, Puneet
Passos, Dário
dc.subject.por.fl_str_mv Transfer learning
Generalizability
Process monitoring
Spectroscopy;
topic Transfer learning
Generalizability
Process monitoring
Spectroscopy;
description This study presents the concept of transfer learning (TL) to the chemometrics community for updating DL models related to spectral data, particularly when a pre-trained DL model needs to be used in a scenario having unseen variability. This is the typical situation where classical chemometrics models require some form of re-calibration or update. In TL, the network architecture and weights from the pre-trained DL model are complemented by adding extra fully connected (FC) layers when dealing with the new data. Such extra FC layers are expected to learn the variability of the new scenario and adjust the output of the main architecture. Furthermore, three approaches of TL were compared, first where the weights from the initial model were left untrained and the only the newly added FC layers could be retrained. The second was when the weights from the initial model could be retrained alongside the new FC layers. The third was when the weights from the initial model could be re-trained with no extra FC layers added. The TL was shown using two real cases related to near-infrared spectroscopy i.e., mango fruit analysis and melamine production monitoring. In the case of mango, the model needs to be updated to cover a new seasonal variability for dry matter prediction, while, for the melamine case, the model needs to be updated for the change in the recipe of the production material. The results showed that the proposed TL approaches successfully updated the DL models to new scenarios for both the mango and melamine cases presented. The TL performed better when the weights from the old model were retrained. Furthermore, TL outperformed three recent benchmark approaches to model updating. TL has the potential to make DL models widely useable, sharable, and scalable.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-18T08:52:51Z
2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/15489
url http://hdl.handle.net/10400.1/15489
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0169-7439
10.1016/j.chemolab.2021.104283
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133304745623552