Fitness landscape analysis of convolutional neural network architectures for image classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/142593 |
Resumo: | Rodrigues, N. M., Malan, K. M., Ochoa, G., Vanneschi, L., & Silva, S. (2022). Fitness landscape analysis of convolutional neural network architectures for image classification. Information Sciences, 609(September), 711-726. https://doi.org/10.1016/j.ins.2022.07.040. ----- Funding: The work of K.M. Malan was supported by the National Research Foundation, South Africa, under Grant 120837. This work was partially supported by FCT, Portugal, through funding of the LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/2020); projects GADgET (DSAIPA/ DS/ 0022/ 2018), BINDER (PTDC/ CCI-INF/ 29168/ 2017), AICE (DSAIPA/ DS/ 0113/ 2019); Nuno Rodrigues was supported by PhD Grant 2021/05322/BD. |
id |
RCAP_4e1ded10f950c55d7541070ce5935c51 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/142593 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fitness landscape analysis of convolutional neural network architectures for image classificationNeural architecture searchConvolutional neural networksFitness distance correlationLocal optima networksLoss landscapesTheoretical Computer ScienceSoftwareControl and Systems EngineeringComputer Science ApplicationsInformation Systems and ManagementArtificial IntelligenceRodrigues, N. M., Malan, K. M., Ochoa, G., Vanneschi, L., & Silva, S. (2022). Fitness landscape analysis of convolutional neural network architectures for image classification. Information Sciences, 609(September), 711-726. https://doi.org/10.1016/j.ins.2022.07.040. ----- Funding: The work of K.M. Malan was supported by the National Research Foundation, South Africa, under Grant 120837. This work was partially supported by FCT, Portugal, through funding of the LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/2020); projects GADgET (DSAIPA/ DS/ 0022/ 2018), BINDER (PTDC/ CCI-INF/ 29168/ 2017), AICE (DSAIPA/ DS/ 0113/ 2019); Nuno Rodrigues was supported by PhD Grant 2021/05322/BD.The global structure of the hyperparameter spaces of neural networks is not well understood and it is therefore not clear which hyperparameter search algorithm will be most effective. In this paper we analyze the landscapes of convolutional neural network architecture search spaces to provide insight into appropriate search algorithms for these spaces. Using a classical fitness landscape analysis approach (fitness distance correlation) and a more recent tool (local optima networks) we study the global structure of these spaces. Our analysis on six image classification datasets reveals that the landscapes are multi-modal, but with relatively few local optima from which it is not hard to escape with a simple perturbation operator. This led us to explore the performance of iterated local search, which we found to more effectively search the training landscapes than three evolutionary algorithm variants. Evolutionary algorithms, however, outperformed iterated local search in terms of generalization on problems with larger discrepancies between the training and testing landscapes.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNRodrigues, Nuno M.Malan, Katherine M.Ochoa, GabrielaVanneschi, LeonardoSilva, Sara2022-07-28T22:24:00Z2022-09-012022-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article16application/pdfhttp://hdl.handle.net/10362/142593eng0020-0255PURE: 45396324https://doi.org/10.1016/j.ins.2022.07.040info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:20:22Zoai:run.unl.pt:10362/142593Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:50:24.577974Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fitness landscape analysis of convolutional neural network architectures for image classification |
title |
Fitness landscape analysis of convolutional neural network architectures for image classification |
spellingShingle |
Fitness landscape analysis of convolutional neural network architectures for image classification Rodrigues, Nuno M. Neural architecture search Convolutional neural networks Fitness distance correlation Local optima networks Loss landscapes Theoretical Computer Science Software Control and Systems Engineering Computer Science Applications Information Systems and Management Artificial Intelligence |
title_short |
Fitness landscape analysis of convolutional neural network architectures for image classification |
title_full |
Fitness landscape analysis of convolutional neural network architectures for image classification |
title_fullStr |
Fitness landscape analysis of convolutional neural network architectures for image classification |
title_full_unstemmed |
Fitness landscape analysis of convolutional neural network architectures for image classification |
title_sort |
Fitness landscape analysis of convolutional neural network architectures for image classification |
author |
Rodrigues, Nuno M. |
author_facet |
Rodrigues, Nuno M. Malan, Katherine M. Ochoa, Gabriela Vanneschi, Leonardo Silva, Sara |
author_role |
author |
author2 |
Malan, Katherine M. Ochoa, Gabriela Vanneschi, Leonardo Silva, Sara |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Rodrigues, Nuno M. Malan, Katherine M. Ochoa, Gabriela Vanneschi, Leonardo Silva, Sara |
dc.subject.por.fl_str_mv |
Neural architecture search Convolutional neural networks Fitness distance correlation Local optima networks Loss landscapes Theoretical Computer Science Software Control and Systems Engineering Computer Science Applications Information Systems and Management Artificial Intelligence |
topic |
Neural architecture search Convolutional neural networks Fitness distance correlation Local optima networks Loss landscapes Theoretical Computer Science Software Control and Systems Engineering Computer Science Applications Information Systems and Management Artificial Intelligence |
description |
Rodrigues, N. M., Malan, K. M., Ochoa, G., Vanneschi, L., & Silva, S. (2022). Fitness landscape analysis of convolutional neural network architectures for image classification. Information Sciences, 609(September), 711-726. https://doi.org/10.1016/j.ins.2022.07.040. ----- Funding: The work of K.M. Malan was supported by the National Research Foundation, South Africa, under Grant 120837. This work was partially supported by FCT, Portugal, through funding of the LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/2020); projects GADgET (DSAIPA/ DS/ 0022/ 2018), BINDER (PTDC/ CCI-INF/ 29168/ 2017), AICE (DSAIPA/ DS/ 0113/ 2019); Nuno Rodrigues was supported by PhD Grant 2021/05322/BD. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-28T22:24:00Z 2022-09-01 2022-09-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/142593 |
url |
http://hdl.handle.net/10362/142593 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0020-0255 PURE: 45396324 https://doi.org/10.1016/j.ins.2022.07.040 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
16 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138100737212416 |