Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/61431 |
Resumo: | Sympatry can lead to higher competition under climate change and other environmental pressures, including in South Georgia, Antarctica, where the two most common octopod species, Adelieledone polymorpha and Pareledone turqueti, occur side by side. Since cephalopods are typically elusive animals, the ecology of both species is poorly known. As beaks of cephalopods are recurrently found in top predator's stomachs, we studied the feeding ecology of both octopods through the evaluation of niche overlapping and specific beak adaptations that both species present. A multidisciplinary approach combining carbon (δ13C) and nitrogen (δ15N) stable isotope signatures, mercury (Hg) analysis and biomaterials' engineering techniques was applied to investigate the beaks. An isotopic niche overlap of 95.6% was recorded for the juvenile stages of both octopod species, dropping to 19.2% for the adult stages. Both A. polymorpha and P. turqueti inhabit benthic ecosystems around South Georgia throughout their lifecycles (δ13C: −19.21 ± 1.87‰, mean ± SD for both species) but explore trophic niches partially different during adult life stages (δ15N: 7.01 ± 0.40‰, in A. polymorpha, and 7.84 ± 0.65‰, in P. turqueti). The beaks of A. polymorpha are less dense and significantly less stiff than in P. turqueti. Beaks showed lower mercury concentration relative to muscle (A. polymorpha - beaks: 0.052 ± 0.009 μg g−1, muscle: 0.322 ± 0.088 μg g−1; P. turqueti - beaks: 0.038 ± 0.009 μg g−1; muscle: 0.434 ± 0.128 μg g−1). Overall, both octopods exhibit similar habitats but different trophic niches, related to morphology/function of beaks. The high Hg concentrations in both octopods can have negative consequences on their top predators and may increase under the present climate change context. |
id |
RCAP_4e266928d234a8fa8ccf23dbdcdbe209 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/61431 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change contextBiomaterialsCephalopodsMercurySouth GeorgiaStable isotopesSympatryScience & TechnologySympatry can lead to higher competition under climate change and other environmental pressures, including in South Georgia, Antarctica, where the two most common octopod species, Adelieledone polymorpha and Pareledone turqueti, occur side by side. Since cephalopods are typically elusive animals, the ecology of both species is poorly known. As beaks of cephalopods are recurrently found in top predator's stomachs, we studied the feeding ecology of both octopods through the evaluation of niche overlapping and specific beak adaptations that both species present. A multidisciplinary approach combining carbon (δ13C) and nitrogen (δ15N) stable isotope signatures, mercury (Hg) analysis and biomaterials' engineering techniques was applied to investigate the beaks. An isotopic niche overlap of 95.6% was recorded for the juvenile stages of both octopod species, dropping to 19.2% for the adult stages. Both A. polymorpha and P. turqueti inhabit benthic ecosystems around South Georgia throughout their lifecycles (δ13C: −19.21 ± 1.87‰, mean ± SD for both species) but explore trophic niches partially different during adult life stages (δ15N: 7.01 ± 0.40‰, in A. polymorpha, and 7.84 ± 0.65‰, in P. turqueti). The beaks of A. polymorpha are less dense and significantly less stiff than in P. turqueti. Beaks showed lower mercury concentration relative to muscle (A. polymorpha - beaks: 0.052 ± 0.009 μg g−1, muscle: 0.322 ± 0.088 μg g−1; P. turqueti - beaks: 0.038 ± 0.009 μg g−1; muscle: 0.434 ± 0.128 μg g−1). Overall, both octopods exhibit similar habitats but different trophic niches, related to morphology/function of beaks. The high Hg concentrations in both octopods can have negative consequences on their top predators and may increase under the present climate change context.British Antarctic Survey for assisting in the collection of the specimens for this work. Many thanks to 3B's Research Group (University of Minho) and MAREFOZ who were responsible for analysing the physical properties of beaks and stable isotope signatures. A special thank you to our colleague José Queirós from MARE-UC (Coimbra, Portugal) for his suggestions and guidance. A debt of gratitude is also owed to Dr. A. Louise Allcock (NUI Galway) for her useful guidelines. This work is an international effort under the Scientific Committee on Antarctic Research (SCAR) associated programs, expert and action groups, namely SCAR AnT-ERA, SCAR EGBAMM and ICED. J.C. Xavier was supported by the Investigator Programme (IF/00616/2013) of the Foundation for Science and Technology (FCT-Portugal) and PROPOLAR, and F.R. Ceia was supported by a postdoctoral fellowship (SFRH/BPD/95372/2013) attributed by FCT-Portugal and the European Social Fund (POPH, EU). This study benefited from the strategic program of MARE, financed by FCT-Portugal (MARE- UID/MAR/04292/2019). We also acknowledge FCT-Portugal through a PhD grant to J. Seco (SRFH/PD/BD/113487)ElsevierUniversidade do MinhoMatias, R. S.Gregory, S.Ceia, F. R.Baeta, A.Seco, J.Rocha, M. S.Fernandes, Emanuel MoutaReis, R. L.Silva, Tiago José Quinteiros Lopes HenriquesPereira, E.Piatkowski, U.Ramos, J. A.Xavier, J. C.2019-092019-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/61431engMatias R. S., Gregory S., Ceia F. R., Baeta A., Seco J., Rocha M. S., Fernandes E. M., Reis R. L., Silva T. H., Pereira E., Piatkowski U., Ramos J. A., Xavier J. C. Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context, Marine Environmental Research, Vol. 150, pp. 104757, doi:10.1016/j.marenvres.2019.104757, 20190141-11361879-029110.1016/j.marenvres.2019.10475731306868https://doi.org/10.1016/j.marenvres.2019.104757info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:04:19Zoai:repositorium.sdum.uminho.pt:1822/61431Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:54:37.081565Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context |
title |
Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context |
spellingShingle |
Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context Matias, R. S. Biomaterials Cephalopods Mercury South Georgia Stable isotopes Sympatry Science & Technology |
title_short |
Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context |
title_full |
Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context |
title_fullStr |
Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context |
title_full_unstemmed |
Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context |
title_sort |
Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context |
author |
Matias, R. S. |
author_facet |
Matias, R. S. Gregory, S. Ceia, F. R. Baeta, A. Seco, J. Rocha, M. S. Fernandes, Emanuel Mouta Reis, R. L. Silva, Tiago José Quinteiros Lopes Henriques Pereira, E. Piatkowski, U. Ramos, J. A. Xavier, J. C. |
author_role |
author |
author2 |
Gregory, S. Ceia, F. R. Baeta, A. Seco, J. Rocha, M. S. Fernandes, Emanuel Mouta Reis, R. L. Silva, Tiago José Quinteiros Lopes Henriques Pereira, E. Piatkowski, U. Ramos, J. A. Xavier, J. C. |
author2_role |
author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Matias, R. S. Gregory, S. Ceia, F. R. Baeta, A. Seco, J. Rocha, M. S. Fernandes, Emanuel Mouta Reis, R. L. Silva, Tiago José Quinteiros Lopes Henriques Pereira, E. Piatkowski, U. Ramos, J. A. Xavier, J. C. |
dc.subject.por.fl_str_mv |
Biomaterials Cephalopods Mercury South Georgia Stable isotopes Sympatry Science & Technology |
topic |
Biomaterials Cephalopods Mercury South Georgia Stable isotopes Sympatry Science & Technology |
description |
Sympatry can lead to higher competition under climate change and other environmental pressures, including in South Georgia, Antarctica, where the two most common octopod species, Adelieledone polymorpha and Pareledone turqueti, occur side by side. Since cephalopods are typically elusive animals, the ecology of both species is poorly known. As beaks of cephalopods are recurrently found in top predator's stomachs, we studied the feeding ecology of both octopods through the evaluation of niche overlapping and specific beak adaptations that both species present. A multidisciplinary approach combining carbon (δ13C) and nitrogen (δ15N) stable isotope signatures, mercury (Hg) analysis and biomaterials' engineering techniques was applied to investigate the beaks. An isotopic niche overlap of 95.6% was recorded for the juvenile stages of both octopod species, dropping to 19.2% for the adult stages. Both A. polymorpha and P. turqueti inhabit benthic ecosystems around South Georgia throughout their lifecycles (δ13C: −19.21 ± 1.87‰, mean ± SD for both species) but explore trophic niches partially different during adult life stages (δ15N: 7.01 ± 0.40‰, in A. polymorpha, and 7.84 ± 0.65‰, in P. turqueti). The beaks of A. polymorpha are less dense and significantly less stiff than in P. turqueti. Beaks showed lower mercury concentration relative to muscle (A. polymorpha - beaks: 0.052 ± 0.009 μg g−1, muscle: 0.322 ± 0.088 μg g−1; P. turqueti - beaks: 0.038 ± 0.009 μg g−1; muscle: 0.434 ± 0.128 μg g−1). Overall, both octopods exhibit similar habitats but different trophic niches, related to morphology/function of beaks. The high Hg concentrations in both octopods can have negative consequences on their top predators and may increase under the present climate change context. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 2019-09-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/61431 |
url |
http://hdl.handle.net/1822/61431 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Matias R. S., Gregory S., Ceia F. R., Baeta A., Seco J., Rocha M. S., Fernandes E. M., Reis R. L., Silva T. H., Pereira E., Piatkowski U., Ramos J. A., Xavier J. C. Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context, Marine Environmental Research, Vol. 150, pp. 104757, doi:10.1016/j.marenvres.2019.104757, 2019 0141-1136 1879-0291 10.1016/j.marenvres.2019.104757 31306868 https://doi.org/10.1016/j.marenvres.2019.104757 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132328414412800 |