Uncertainty-Aware AI for ECG arrhythmia multi-label classification

Detalhes bibliográficos
Autor(a) principal: Simão, Raquel Filipa Birra
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/157128
Resumo: Machine Learning (ML) models are able to predict a variety of diseases, with performances that can be superior to those achieved by healthcare professionals. However, when implemented in clinical settings as decision support systems, their generalisation capabilities are often compromised, rendering healthcare professionals more susceptible into delivering erroneous diagnostics. This research focuses on uncertainty measures as a key method to abstain from classifying samples with high uncertainty as well as a selection criterion for active learning strategies. For this purpose, it was employed four large public multi-label Electrocardiogram (ECG) databases for the classification of cardiac arrhythmias. Regarding the uncertainty measures, single distribution uncertainty and classical information-theoretic measures of entropy were tested and compared. Thus, three Deep Learning models were developed: a single convolutional neural network and two multiple-models using Monte-Carlo Dropout and Deep Ensemble techniques. When tested with samples from the same database used for training, all models achieved performances higher than 95% for F1-score. However, when tested on an external dataset, their performances dropped to approximately 70%, indicating a probable scenario of dataset shift. The Deep Ensemble model obtained the highest F1-score in both test sets with a maximum difference of 3% from the others. The classification withrejection option increased from a rejection of10% to a range between 30% to 50% depending on the model or uncertainty measure, with the highest rejection rates being obtained on external data. This reveals that external dataset’s classifications have higher uncertainty, also an indication of dataset shift. For the active learning approach, 10% of the highest uncertainty sampleswere used to retrain the models. The performances results increased by almost 5%, suggesting uncertainty as a good selection method. Although there are still challenges to the implementation of ML models, the preliminary studies show that uncertainty quantification is a valuable method for classification with rejection option and active learning approaches under dataset shift conditions.
id RCAP_4e3bd52bcffecb83eb8a6960698022ba
oai_identifier_str oai:run.unl.pt:10362/157128
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Uncertainty-Aware AI for ECG arrhythmia multi-label classificationUncertainty QuantificationMonte Carlo DropoutDeep EnsembleDataset shiftActive LearningDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasMachine Learning (ML) models are able to predict a variety of diseases, with performances that can be superior to those achieved by healthcare professionals. However, when implemented in clinical settings as decision support systems, their generalisation capabilities are often compromised, rendering healthcare professionals more susceptible into delivering erroneous diagnostics. This research focuses on uncertainty measures as a key method to abstain from classifying samples with high uncertainty as well as a selection criterion for active learning strategies. For this purpose, it was employed four large public multi-label Electrocardiogram (ECG) databases for the classification of cardiac arrhythmias. Regarding the uncertainty measures, single distribution uncertainty and classical information-theoretic measures of entropy were tested and compared. Thus, three Deep Learning models were developed: a single convolutional neural network and two multiple-models using Monte-Carlo Dropout and Deep Ensemble techniques. When tested with samples from the same database used for training, all models achieved performances higher than 95% for F1-score. However, when tested on an external dataset, their performances dropped to approximately 70%, indicating a probable scenario of dataset shift. The Deep Ensemble model obtained the highest F1-score in both test sets with a maximum difference of 3% from the others. The classification withrejection option increased from a rejection of10% to a range between 30% to 50% depending on the model or uncertainty measure, with the highest rejection rates being obtained on external data. This reveals that external dataset’s classifications have higher uncertainty, also an indication of dataset shift. For the active learning approach, 10% of the highest uncertainty sampleswere used to retrain the models. The performances results increased by almost 5%, suggesting uncertainty as a good selection method. Although there are still challenges to the implementation of ML models, the preliminary studies show that uncertainty quantification is a valuable method for classification with rejection option and active learning approaches under dataset shift conditions.Modelos de aprendizagem automática conseguem prever um leque de doenças, muitas vezes com desempenhos superiores aos obtidos pelos profissionais de saúde. Contudo, quando integrados em ambientes clínicos como sistemas de apoio à decisão, a generalização destes fica comprometida, o que leva a que profissionais de saúde fiquem mais suscetíveis de fornecer diagnósticos incorretos. Deste modo, este projeto foca-se no papel da incerteza na rejeição de classificações com elevada incerteza e na aprendizagem ativa. Quatro bases de dados públicas de sinais ECG multi-label foram utilizadas na classificação de arritmias cardíacas. Relativamente à quantificação da incerteza, foram testadas e comparadas incertezas provenientes das distribuições e da teoria de informação clássica da entropia. Para tal, foram desenvolvidos três tipos de redes neurais convolucionais: um modelo único e dois modelos obtidos através das técnicas de Monte-Carlo Dropout e Deep Ensemble. Quando testados com dados da mesma base de dados de treino, os modelos alcançaram desempenhos superiores a 95% de F1-score. No entanto, quando testados com dados externos, os desempenhos desceram para cerca de 70%, revelando a possibilidade de dataset shift. O modelo Deep Ensemble obteve os melhores resultados em ambos os dados de teste, com uma diferença máxima de 3% em relação aos outros modelos. O threshold de rejeição de 10% em treino aumentou para valores entre 30% a 50%, dependendo do modelo e da medida de incerteza, sendo que as rejeições mais elevadas são obtidas nos dados externos. Isto revela que estes dados têm maior incerteza nas suas classificações, confirmando a presença de dataset shift. Para a abordagem de aprendizagem ativa, 10% de dados com elevada incerteza foram utilizados para retreinar os modelos. O desempenho destes aumentou quase 5%, sugerindo a incerteza como um bom critério de seleção. Apesar de ainda existirem desafios na implementação de modelos de aprendizagem automática, os resultados preliminares revelam que a quantificação da incerteza é um método valioso na classificação com rejeição e na aprendizagem ativa, em condições de dataset shift.Gamboa, HugoRUNSimão, Raquel Filipa Birra2023-09-01T13:03:03Z2022-112022-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/157128enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:39:23Zoai:run.unl.pt:10362/157128Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:34.014823Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Uncertainty-Aware AI for ECG arrhythmia multi-label classification
title Uncertainty-Aware AI for ECG arrhythmia multi-label classification
spellingShingle Uncertainty-Aware AI for ECG arrhythmia multi-label classification
Simão, Raquel Filipa Birra
Uncertainty Quantification
Monte Carlo Dropout
Deep Ensemble
Dataset shift
Active Learning
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Uncertainty-Aware AI for ECG arrhythmia multi-label classification
title_full Uncertainty-Aware AI for ECG arrhythmia multi-label classification
title_fullStr Uncertainty-Aware AI for ECG arrhythmia multi-label classification
title_full_unstemmed Uncertainty-Aware AI for ECG arrhythmia multi-label classification
title_sort Uncertainty-Aware AI for ECG arrhythmia multi-label classification
author Simão, Raquel Filipa Birra
author_facet Simão, Raquel Filipa Birra
author_role author
dc.contributor.none.fl_str_mv Gamboa, Hugo
RUN
dc.contributor.author.fl_str_mv Simão, Raquel Filipa Birra
dc.subject.por.fl_str_mv Uncertainty Quantification
Monte Carlo Dropout
Deep Ensemble
Dataset shift
Active Learning
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Uncertainty Quantification
Monte Carlo Dropout
Deep Ensemble
Dataset shift
Active Learning
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description Machine Learning (ML) models are able to predict a variety of diseases, with performances that can be superior to those achieved by healthcare professionals. However, when implemented in clinical settings as decision support systems, their generalisation capabilities are often compromised, rendering healthcare professionals more susceptible into delivering erroneous diagnostics. This research focuses on uncertainty measures as a key method to abstain from classifying samples with high uncertainty as well as a selection criterion for active learning strategies. For this purpose, it was employed four large public multi-label Electrocardiogram (ECG) databases for the classification of cardiac arrhythmias. Regarding the uncertainty measures, single distribution uncertainty and classical information-theoretic measures of entropy were tested and compared. Thus, three Deep Learning models were developed: a single convolutional neural network and two multiple-models using Monte-Carlo Dropout and Deep Ensemble techniques. When tested with samples from the same database used for training, all models achieved performances higher than 95% for F1-score. However, when tested on an external dataset, their performances dropped to approximately 70%, indicating a probable scenario of dataset shift. The Deep Ensemble model obtained the highest F1-score in both test sets with a maximum difference of 3% from the others. The classification withrejection option increased from a rejection of10% to a range between 30% to 50% depending on the model or uncertainty measure, with the highest rejection rates being obtained on external data. This reveals that external dataset’s classifications have higher uncertainty, also an indication of dataset shift. For the active learning approach, 10% of the highest uncertainty sampleswere used to retrain the models. The performances results increased by almost 5%, suggesting uncertainty as a good selection method. Although there are still challenges to the implementation of ML models, the preliminary studies show that uncertainty quantification is a valuable method for classification with rejection option and active learning approaches under dataset shift conditions.
publishDate 2022
dc.date.none.fl_str_mv 2022-11
2022-11-01T00:00:00Z
2023-09-01T13:03:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/157128
url http://hdl.handle.net/10362/157128
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138150513115136