Mechanisms underlying intracellular delivery

Detalhes bibliográficos
Autor(a) principal: Carreira, Ana Bárbara de Sousa
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/16527
Resumo: AuNPs are versatile systems used for different biomedical application including imaging, drug and gene delivery. These systems support the intracellular transport of active molecules, a step that is considered one of the crucial problems in drug delivery. Nevertheless, in order to design optimal multifunctional AuNPs for specific and efficient nanomedicine applications, the mechanism by which AuNPs interact with living cells must be fully understand. The main goal of this work consisted in the assessment of the cellular uptake mechanism of 14 nm spherical AuNPs by A549 cells, through fluorescent spectroscopy and microscopy, in combination with quantitative analysis by ICP-MS. TAMRA labeled AuNPs were characterized by UV-visible and fluorescent spectroscopy and the final hydrodynamic diameter of 22.5 ± 0.33 nm was obtained by DLS. Regarding the cellular uptake studies, the AuNPs presented a fast cellular uptake kinetics reaching a saturation point after 6 hours of incubation in A549 cells. Further investigation concerning the internalization mechanism of this AuNPs was evaluated using specific inhibitors for different endocytic pathways. Optimal inhibition was achieved using chlorpromazine, inhibitor of clathrin-mediated endocytosis, resulting in a 23.5 % inhibition of AuNPs after 1 hour of incubation. This preliminary result obtained by fluorescent spectroscopy suggests that these AuNPs were predominantly uptake by clathrin-mediated endocytosis, meaning that other endocytic pathways must be involved in the cellular uptake of this AuNPs. In what cell viability is concern, the prepared AuNPs and the endocytic inhibitors revealed no significant effect on the cell viability in A549 cell line.
id RCAP_4ed62ac5e7f8a845d8f52f7a3f4cd22e
oai_identifier_str oai:run.unl.pt:10362/16527
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Mechanisms underlying intracellular deliveryEndocytic inhibitionGold nanoparticlesInternalization mechanismsNanomedicineDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasAuNPs are versatile systems used for different biomedical application including imaging, drug and gene delivery. These systems support the intracellular transport of active molecules, a step that is considered one of the crucial problems in drug delivery. Nevertheless, in order to design optimal multifunctional AuNPs for specific and efficient nanomedicine applications, the mechanism by which AuNPs interact with living cells must be fully understand. The main goal of this work consisted in the assessment of the cellular uptake mechanism of 14 nm spherical AuNPs by A549 cells, through fluorescent spectroscopy and microscopy, in combination with quantitative analysis by ICP-MS. TAMRA labeled AuNPs were characterized by UV-visible and fluorescent spectroscopy and the final hydrodynamic diameter of 22.5 ± 0.33 nm was obtained by DLS. Regarding the cellular uptake studies, the AuNPs presented a fast cellular uptake kinetics reaching a saturation point after 6 hours of incubation in A549 cells. Further investigation concerning the internalization mechanism of this AuNPs was evaluated using specific inhibitors for different endocytic pathways. Optimal inhibition was achieved using chlorpromazine, inhibitor of clathrin-mediated endocytosis, resulting in a 23.5 % inhibition of AuNPs after 1 hour of incubation. This preliminary result obtained by fluorescent spectroscopy suggests that these AuNPs were predominantly uptake by clathrin-mediated endocytosis, meaning that other endocytic pathways must be involved in the cellular uptake of this AuNPs. In what cell viability is concern, the prepared AuNPs and the endocytic inhibitors revealed no significant effect on the cell viability in A549 cell line.Figueiredo, SaraBaptista, PedroRUNCarreira, Ana Bárbara de Sousa2016-02-23T11:46:42Z2015-092016-022015-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/16527enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:53:35Zoai:run.unl.pt:10362/16527Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:23:19.383578Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Mechanisms underlying intracellular delivery
title Mechanisms underlying intracellular delivery
spellingShingle Mechanisms underlying intracellular delivery
Carreira, Ana Bárbara de Sousa
Endocytic inhibition
Gold nanoparticles
Internalization mechanisms
Nanomedicine
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Mechanisms underlying intracellular delivery
title_full Mechanisms underlying intracellular delivery
title_fullStr Mechanisms underlying intracellular delivery
title_full_unstemmed Mechanisms underlying intracellular delivery
title_sort Mechanisms underlying intracellular delivery
author Carreira, Ana Bárbara de Sousa
author_facet Carreira, Ana Bárbara de Sousa
author_role author
dc.contributor.none.fl_str_mv Figueiredo, Sara
Baptista, Pedro
RUN
dc.contributor.author.fl_str_mv Carreira, Ana Bárbara de Sousa
dc.subject.por.fl_str_mv Endocytic inhibition
Gold nanoparticles
Internalization mechanisms
Nanomedicine
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Endocytic inhibition
Gold nanoparticles
Internalization mechanisms
Nanomedicine
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description AuNPs are versatile systems used for different biomedical application including imaging, drug and gene delivery. These systems support the intracellular transport of active molecules, a step that is considered one of the crucial problems in drug delivery. Nevertheless, in order to design optimal multifunctional AuNPs for specific and efficient nanomedicine applications, the mechanism by which AuNPs interact with living cells must be fully understand. The main goal of this work consisted in the assessment of the cellular uptake mechanism of 14 nm spherical AuNPs by A549 cells, through fluorescent spectroscopy and microscopy, in combination with quantitative analysis by ICP-MS. TAMRA labeled AuNPs were characterized by UV-visible and fluorescent spectroscopy and the final hydrodynamic diameter of 22.5 ± 0.33 nm was obtained by DLS. Regarding the cellular uptake studies, the AuNPs presented a fast cellular uptake kinetics reaching a saturation point after 6 hours of incubation in A549 cells. Further investigation concerning the internalization mechanism of this AuNPs was evaluated using specific inhibitors for different endocytic pathways. Optimal inhibition was achieved using chlorpromazine, inhibitor of clathrin-mediated endocytosis, resulting in a 23.5 % inhibition of AuNPs after 1 hour of incubation. This preliminary result obtained by fluorescent spectroscopy suggests that these AuNPs were predominantly uptake by clathrin-mediated endocytosis, meaning that other endocytic pathways must be involved in the cellular uptake of this AuNPs. In what cell viability is concern, the prepared AuNPs and the endocytic inhibitors revealed no significant effect on the cell viability in A549 cell line.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
2015-09-01T00:00:00Z
2016-02-23T11:46:42Z
2016-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/16527
url http://hdl.handle.net/10362/16527
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137870490894336