Development and implementation of clinical guidelines : an artificial intelligence perspective
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/32070 |
Resumo: | Clinical practice guidelines in paper format are still the preferred form of delivery of medical knowledge and recommendations to healthcare professionals. Their current support and development process have well identified limitations to which the healthcare community has been continuously searching solutions. Artificial intelligence may create the conditions and provide the tools to address many, if not all, of these limitations.. This paper presents a comprehensive and up to date review of computer-interpretable guideline approaches, namely Arden Syntax, GLIF, PROforma, Asbru, GLARE and SAGE. It also provides an assessment of how well these approaches respond to the challenges posed by paper-based guidelines and addresses topics of Artificial intelligence that could provide a solution to the shortcomings of clinical guidelines. Among the topics addressed by this paper are expert systems, case-based reasoning, medical ontologies and reasoning under uncertainty, with a special focus on methodologies for assessing quality of information when managing incomplete information. Finally, an analysis is made of the fundamental requirements of a guideline model and the importance that standard terminologies and models for clinical data have in the semantic and syntactic interoperability between a guideline execution engine and the software tools used in clinical settings. It is also proposed a line of research that includes the development of an ontology for clinical practice guidelines and a decision model for a guideline-based expert system that manages non-compliance with clinical guidelines and uncertainty. |
id |
RCAP_4edd045a2b465af1b93ad6250edf37c8 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/32070 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Development and implementation of clinical guidelines : an artificial intelligence perspectiveComputer-interpretable guidelinesOntologiesDecision supportQuality of informationEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaScience & TechnologyClinical practice guidelines in paper format are still the preferred form of delivery of medical knowledge and recommendations to healthcare professionals. Their current support and development process have well identified limitations to which the healthcare community has been continuously searching solutions. Artificial intelligence may create the conditions and provide the tools to address many, if not all, of these limitations.. This paper presents a comprehensive and up to date review of computer-interpretable guideline approaches, namely Arden Syntax, GLIF, PROforma, Asbru, GLARE and SAGE. It also provides an assessment of how well these approaches respond to the challenges posed by paper-based guidelines and addresses topics of Artificial intelligence that could provide a solution to the shortcomings of clinical guidelines. Among the topics addressed by this paper are expert systems, case-based reasoning, medical ontologies and reasoning under uncertainty, with a special focus on methodologies for assessing quality of information when managing incomplete information. Finally, an analysis is made of the fundamental requirements of a guideline model and the importance that standard terminologies and models for clinical data have in the semantic and syntactic interoperability between a guideline execution engine and the software tools used in clinical settings. It is also proposed a line of research that includes the development of an ontology for clinical practice guidelines and a decision model for a guideline-based expert system that manages non-compliance with clinical guidelines and uncertainty.This work is funded by national funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project PEst-OE/EEI/UI0752/2011".SpringerUniversidade do MinhoOliveira, Tiago José MartinsNovais, PauloNeves, José20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/32070eng0269-282110.1007/s10462-013-9402-2http://link.springer.com/article/10.1007/s10462-013-9402-2info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:15:11Zoai:repositorium.sdum.uminho.pt:1822/32070Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:07:37.143099Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Development and implementation of clinical guidelines : an artificial intelligence perspective |
title |
Development and implementation of clinical guidelines : an artificial intelligence perspective |
spellingShingle |
Development and implementation of clinical guidelines : an artificial intelligence perspective Oliveira, Tiago José Martins Computer-interpretable guidelines Ontologies Decision support Quality of information Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
title_short |
Development and implementation of clinical guidelines : an artificial intelligence perspective |
title_full |
Development and implementation of clinical guidelines : an artificial intelligence perspective |
title_fullStr |
Development and implementation of clinical guidelines : an artificial intelligence perspective |
title_full_unstemmed |
Development and implementation of clinical guidelines : an artificial intelligence perspective |
title_sort |
Development and implementation of clinical guidelines : an artificial intelligence perspective |
author |
Oliveira, Tiago José Martins |
author_facet |
Oliveira, Tiago José Martins Novais, Paulo Neves, José |
author_role |
author |
author2 |
Novais, Paulo Neves, José |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Oliveira, Tiago José Martins Novais, Paulo Neves, José |
dc.subject.por.fl_str_mv |
Computer-interpretable guidelines Ontologies Decision support Quality of information Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
topic |
Computer-interpretable guidelines Ontologies Decision support Quality of information Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
description |
Clinical practice guidelines in paper format are still the preferred form of delivery of medical knowledge and recommendations to healthcare professionals. Their current support and development process have well identified limitations to which the healthcare community has been continuously searching solutions. Artificial intelligence may create the conditions and provide the tools to address many, if not all, of these limitations.. This paper presents a comprehensive and up to date review of computer-interpretable guideline approaches, namely Arden Syntax, GLIF, PROforma, Asbru, GLARE and SAGE. It also provides an assessment of how well these approaches respond to the challenges posed by paper-based guidelines and addresses topics of Artificial intelligence that could provide a solution to the shortcomings of clinical guidelines. Among the topics addressed by this paper are expert systems, case-based reasoning, medical ontologies and reasoning under uncertainty, with a special focus on methodologies for assessing quality of information when managing incomplete information. Finally, an analysis is made of the fundamental requirements of a guideline model and the importance that standard terminologies and models for clinical data have in the semantic and syntactic interoperability between a guideline execution engine and the software tools used in clinical settings. It is also proposed a line of research that includes the development of an ontology for clinical practice guidelines and a decision model for a guideline-based expert system that manages non-compliance with clinical guidelines and uncertainty. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/32070 |
url |
http://hdl.handle.net/1822/32070 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0269-2821 10.1007/s10462-013-9402-2 http://link.springer.com/article/10.1007/s10462-013-9402-2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132496104783872 |