Recommendation system using autoencoders
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/66695 |
Resumo: | The magnitude of the daily explosion of high volumes of data has led to the emergence of the Big Data paradigm. The ever-increasing amount of information available on the Internet makes it increasingly difficult for individuals to find what they need quickly and easily. Recommendation systems have appeared as a solution to overcome this problem. Collaborative filtering is widely used in this type of systems, but high dimensions and data sparsity are always a main problem. With the idea of deep learning gaining more importance, several works have emerged to improve this type of filtering. In this article, a product recommendation system is proposed where an autoencoder based on a collaborative filtering method is employed. A comparison of this model with the Singular Value Decomposition is made and presented in the results section. Our experiment shows a very low Root Mean Squared Error (RMSE) value, considering that the recommendations presented to the users are in line with their interests and are not affected by the data sparsity problem as the datasets are very sparse, 0.996. The results are quite promising achieving an RMSE value of 0.029 in the first dataset and 0.010 in the second one. |
id |
RCAP_4f1a190979b603b2965cfb67c1f60611 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/66695 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Recommendation system using autoencodersBig Datarecommendation systemscollaborative filteringautoencodersScience & TechnologyThe magnitude of the daily explosion of high volumes of data has led to the emergence of the Big Data paradigm. The ever-increasing amount of information available on the Internet makes it increasingly difficult for individuals to find what they need quickly and easily. Recommendation systems have appeared as a solution to overcome this problem. Collaborative filtering is widely used in this type of systems, but high dimensions and data sparsity are always a main problem. With the idea of deep learning gaining more importance, several works have emerged to improve this type of filtering. In this article, a product recommendation system is proposed where an autoencoder based on a collaborative filtering method is employed. A comparison of this model with the Singular Value Decomposition is made and presented in the results section. Our experiment shows a very low Root Mean Squared Error (RMSE) value, considering that the recommendations presented to the users are in line with their interests and are not affected by the data sparsity problem as the datasets are very sparse, 0.996. The results are quite promising achieving an RMSE value of 0.029 in the first dataset and 0.010 in the second one.This research has been supported by FCT—Fundação para a Ciência e Tecnologia within the R&D UnitsProject Scope: UIDB/00319/2020Multidisciplinary Digital Publishing InstituteUniversidade do MinhoFerreira, DianaSilva, SofiaAbelha, AntónioMachado, José Manuel20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/66695engFerreira, D.; Silva, S.; Abelha, A.; Machado, J. Recommendation System Using Autoencoders. Appl. Sci. 2020, 10, 5510.2076-341710.3390/app10165510https://www.mdpi.com/2076-3417/10/16/5510info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:40:54Zoai:repositorium.sdum.uminho.pt:1822/66695Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:37:46.387513Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Recommendation system using autoencoders |
title |
Recommendation system using autoencoders |
spellingShingle |
Recommendation system using autoencoders Ferreira, Diana Big Data recommendation systems collaborative filtering autoencoders Science & Technology |
title_short |
Recommendation system using autoencoders |
title_full |
Recommendation system using autoencoders |
title_fullStr |
Recommendation system using autoencoders |
title_full_unstemmed |
Recommendation system using autoencoders |
title_sort |
Recommendation system using autoencoders |
author |
Ferreira, Diana |
author_facet |
Ferreira, Diana Silva, Sofia Abelha, António Machado, José Manuel |
author_role |
author |
author2 |
Silva, Sofia Abelha, António Machado, José Manuel |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, Diana Silva, Sofia Abelha, António Machado, José Manuel |
dc.subject.por.fl_str_mv |
Big Data recommendation systems collaborative filtering autoencoders Science & Technology |
topic |
Big Data recommendation systems collaborative filtering autoencoders Science & Technology |
description |
The magnitude of the daily explosion of high volumes of data has led to the emergence of the Big Data paradigm. The ever-increasing amount of information available on the Internet makes it increasingly difficult for individuals to find what they need quickly and easily. Recommendation systems have appeared as a solution to overcome this problem. Collaborative filtering is widely used in this type of systems, but high dimensions and data sparsity are always a main problem. With the idea of deep learning gaining more importance, several works have emerged to improve this type of filtering. In this article, a product recommendation system is proposed where an autoencoder based on a collaborative filtering method is employed. A comparison of this model with the Singular Value Decomposition is made and presented in the results section. Our experiment shows a very low Root Mean Squared Error (RMSE) value, considering that the recommendations presented to the users are in line with their interests and are not affected by the data sparsity problem as the datasets are very sparse, 0.996. The results are quite promising achieving an RMSE value of 0.029 in the first dataset and 0.010 in the second one. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/66695 |
url |
http://hdl.handle.net/1822/66695 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ferreira, D.; Silva, S.; Abelha, A.; Machado, J. Recommendation System Using Autoencoders. Appl. Sci. 2020, 10, 5510. 2076-3417 10.3390/app10165510 https://www.mdpi.com/2076-3417/10/16/5510 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132912753311744 |